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Suomenkielinen tiivistelmä 

Johdanto  
Energiamarkkinavirasto (EMV) on käynnistänyt sähkönjakeluverkkoliiketoiminnan hinnoittelun 
valvontamallin kehityshankkeen vuosien 2008-2011 valvontajaksoa varten. Hankkeen tavoitteena 
on muun muassa sähkönjakelun tehokkuuden arviointimallin jatkokehittäminen, 
jakeluverkkoyhtiöiden pitkän tähtäimen tehostamispotentiaalin määrittäminen, yhtiökohtaisten 
tehostamistavoitteiden asettaminen ja vaihtoehtoisten valvontamallien kannustinvaikutusten 
analysointi. Valvontamallin kehittämisen näkökulmasta keskeisenä tavoitteena on asettaa 
jakeluverkkoyhtiöille yhtiökohtainen tehostamistavoite, joka heijastelee yhtiöiden toiminnan 
tehostamispotentiaalia.  

Kehityshankkeen osana EMV on tilannut kaksi kehitysprojektia, jotka tähtäävät tehokkuuden 
arviointimallien kehittämiseen. Tavoitteena on ollut kehittää tehokkuuden arviointiin menetelmiä, 
joita voidaan käyttää pohjana asetettaessa yhtiökohtaisia tehostamistavoitteita. Osaprojekti A1 on 
tähdännyt DEA-menetelmään pohjautuvan tehokkuuden arviointimallin jatkokehittämiseen ja 
tehokkuuden arviointimallin hyödyntämiseen liittyvien kysymysten analysointiin. Osaprojekti B 
on tähdännyt rinnakkaisen tehokkuuden arviointimallin kehittämiseen. Yhtiökohtaisen 
tehostamistavoitteen asettamisen rinnalla tavoitteena on samalla ollut laajentaa tehokkuuden 
arviointia huomioimaan laatu ja pääomakustannukset. Mallien kehittämisen liittyvien 
osaprojektien rinnalla EMV on itse vastannut mallien soveltamiseen liittyvien kysymysten kuten 
tehokkuuslukujen käyttöön liittyvien kysymysten ratkaisemisesta. Tässä tiivistelmässä esitellään 
osaprojektin B keskeisiä tuloksia. 

Osaprojektin B tavoitteena on ollut kehittää rinnakkainen tehokkuuden arviointimalli, jota 
voidaan käyttää DEA-mallin tulosten varmennukseen. Kehitystyön lähtökohtana on ollut luoda 
malli, jolla voidaan ratkaista varsinkin DEA-menetelmään liittyviä estimointiongelmia, kuten 
ominaisuuksiltaan tai kooltaan poikkeuksellisten yhtiöiden tehokkuuden arviointi sekä DEA-
menetelmän herkkyys aineistossa esiintyvälle satunnaisvaihtelulle. Siten tavoitteena on ollut luoda 
malli, joka on vertailukelpoinen osaprojektissa A kehitettävän DEA-mallin kanssa. Hankkeen 
lähtökohtana on kuitenkin ollut valita mallin spesifikaatiot itsenäisesti niin, että tulokset ovat 
mahdollisimman riippumattomia. Tavoitteena ei siten ole ollut tuottaa DEA-menetelmä kanssa 
identtisiä tuloksia vaan tarjota riippumaton vertailukohta. Kirjallisuuskatsauksen perusteella 
hankkeen lähestymistavaksi valittiin Stochastic Frontier Analysis (SFA) -menetelmä, joka tarjoaa 
DEAn ominaisuuksia täydentävän lähestymistavan.  

Hankkeen painopisteenä on ollut SFA-menetelmän testaaminen ja mallin konseptuaalinen 
kehittäminen. Tarkastelussa on siten keskitytty panosten ja tuotosten valitaan nykyisin käytössä 
olevien tekijöiden joukosta, funktiomuodon valintaan sekä tehokkuuden ja satunnaisvaihtelun 
jakaumia koskeviin oletuksiin. Tässä vaiheessa mallin yksityiskohtaiset parametrit tai 
yhtiökohtaiset tehokkuusluvut eivät ole olleet tarkastelun pääasiallisena kohteena. Koska 
ensisijaisena tavoitteena on ollut tarkastella estimointiin liittyviä ongelmia, panos- ja 
tuotostekijöiden valinnassa on pitkälti tukeuduttu DEA-mallia varten kerättyyn aineistoon. 

                                                 

1 Osaprojektit A ja B toteutettiin samanaikaisesti. Osaprojektin A tulokset esittelee Honkapuro, Tahvanainen, 
Viljainen, Lassila, Partanen, Kivikko, Mäkinen, Järventausta (2006). 
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Mallin kehittämiseksi hankkeessa on arvioitu useita eri panos-tuotos-yhdistelmiä ja 
funktiomuotoja. Vaihtoehtoisia malleja on arvioitu useista näkökulmista huomioiden niin 
käsitteellinen selkeys ja johdonmukaisuus, tilastolliset ominaisuudet kuin valvontakäytön ja 
käytännön näkökulma. Käytetty aineisto on ollut identtinen rinnakkaiseen DEA-menetelmän 
kehittämiseen tähdänneessä osaprojektissa, mikä mahdollistaa tulosten suoran vertaamisen. 
Pääasiallisen aineistona on käytetty vuoden 2004 dataa. Mallin ja tulosten stabiiliutta on analysoitu 
suhteessa vuoden 2003 aineistoon. 

Hankkeen lähtökohtana on ollut kehittää DEA-mallille rinnakkainen malli, jota voidaan käyttää 
tulosten varmentamiseen. Tavoitteena on ollut kehittää malli, jota EMV voi käyttää itsenäisesti 
tehokkuuslukujen varmentamiseen ja yksittäisten jakeluverkkoyhtiöiden tehostamispotentiaalien 
arviointiin. Mallin varsinaista käyttötapaa ei kuitenkaan tässä vaiheessa ole vielä päätetty. 
Lähtökohtana on kuitenkin ollut kehittää SFA-malli, jota voidaan haluttaessa käyttää rinnakkain 
DEA-mallin kanssa varsinaisessa valvonnassa.  

Stochastic Frontier Analysis -menetelmä 
SFA- ja DEA-menetelmä perustuvat yhteiseen lähtökohtaan tehokkaan rintaman eli tehokkaan 
tuotantofunktion estimoinnista sekä tehokkuuden arvioimisesta suhteessa tähän rintamaan. DEA-
menetelmään verrattuna SFA-menetelmän keskeisin ero on siinä, että menetelmä perustuu 
regressioanalyysin tavoin etukäteen valittavaan funktiomuotoon, joka sovitetaan aineistoon 
määrittämällä rajattu määrä parametreja. Tämän lisäksi menetelmä huomioi aineistossa olevan 
satunnaisvaihtelun. Nämä ominaisuudet tuovat mukanaan seuraavia etuja. 

• Mahdollisuus testata tilastollista merkitsevyyttä muun muassa panos- ja tuotostekijöiden 
valinnassa  

• Tulosten pienempi herkkyys aineistossa esiintyville virheille ja vaihtelulle 
• Tehokkuuden ja satunnaisvaihtelun erottaminen 
• Yksittäisten poikkeavien yhtiöidenkään tehokkuusluku ei koskaan perustu vertailuun vain 

yhtiön itsensä kanssa. 
 
Toisaalta SFA-menetelmän heikkoutena on se, että funktiomuoto sekä tehokkuuden ja 
satunnaisvaihtelun jakauma joudutaan olettamaan etukäteen.  

Tehokkuuden arviointimenetelmän valinnassa joudutaan aina tekemään kompromissi sen 
suhteen, miten joustavasti kustannusrakenne voidaan arvioida eli miten joustavasti malli seuraa 
aineistoa ja toisaalta miten herkkä malli on aineistossa olevalle satunnaisvaihtelulle. SFA korostaa 
mallin kykyä suodattaa aineistossa olevia satunnaisvirheitä. Vastaavasti DEA-menetelmän 
vahvuutena on joustavuus, jonka ansiosta malli kuvaa hyvin panosten ja tuotosten riippuvuutta 
aineiston perusteella. Mikäli mallin rakenne on oikein valittu, menetelmät tuottavat eroistaan 
huolimatta hyvin samankaltaisia tuloksia.   

Seuraavassa on tiivistetysti kuvattu SFA-menetelmän ominaisuuksia. Varsinainen 
englanninkielinen raportti sisältää kattavamman esityksen ja esimerkiksi Coelli et al. (1998) 
esittävät perusteellisen johdatuksen aiheeseen.  

SFA-menetelmän soveltamisessa lähtökohtana on tässä tapauksessa mallintaa jakeluyhtiöiden 
kustannuksia useiden tuotostekijöiden funktiona. Menetelmän keskeisenä oletuksena on se, että 
yhtiöt poikkeavat estimoidusta kustannusfunktiosta eli rintamasta niin tehottomuuden kuin 
satunnaisen vaihtelun takia. Matemaattisesti menetelmän perusajatus voidaan siis esittää 
seuraavasti. 
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xi = C(yi) + ui + vi , i = 1,…,N 

Tässä xi on yhtiön i havaittu kustannustaso ja C(yi) on yhtiön i tuotoksia yi vastaava tehokas 
kustannustaso. Edelleen ui on yhtiön i yksilöllinen tehottomuus, ja vi on yhtiön havaittuun 
kustannustasoon liittyvä satunnaisvaihtelu. Tässä hankkeessa satunnaisvaihtelun vi on oletettu 
olevan normaalijakautunut ja tehottomuuden ui vastaavasti noudattavan katkaistua 
normaalijakaumaa, jossa jakauman katkaisukohta estimoidaan aineistosta.   

Kuva 1 esittää SFA-menetelmän perusajatuksen graafisesti. Kuvassa yhtenäinen käyrä (C(y,β)) 
esittää tehokasta kustannustasoa. Havaitut pisteet eroavat tästä kahden tekijän seurauksena. 
Satunnaisvaihtelu on merkitty v:llä ja tehottomuus u:lla. Kuvassa on havainnollistettu kahden 
yhtiön tilannetta. Yhtiön DSO 1 tapauksessa tehokkaan tason ylittävä kustannus aiheutuu 
positiivisesta satunnaistermistä v1 (esim. satunnainen poikkeava kustannuserä) sekä 
tehottomuudesta u1. Toisaalta yhtiön DSO 2 tapauksessa yhtiön poikkeuksellisen alhainen 
kustannustaso johtuu kustannustasossa olevasta satunnaisesta virheestä v2, joka ylittää yhtiön 
tehottomuuden u2.  
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Kuva 1  SFA mallin perusajatus 

 

Teknisesti tehokkuuden ja satunnaisen vaihtelun erottaminen tapahtuu mallin estimoinnin 
yhteydessä perustuen siihen oletukseen, että satunnaisvaihtelu on symmetrisesti jakautunut ja 
tehottomuus epäsymmetrisesti. Käytännössä kustannusfunktion parametrit ja jakaumien 
parametrit on estimoitava samanaikaisesti maximum likelihood -estimoinnilla. Tavoitteena on 
etsiä ne kustannusfunktion ja jakaumien parametrit, jotka olisivat todennäköisimmin tuottaneet 
havaitun aineiston.    

Edellä kuvatussa kaavassa tehottomuus on esitetty terminä, joka lisätään tehokkaaseen 
kustannustasoon. Mallia estimoitaessa tehottomuus esitetään siis absoluuttisena euromääräisenä 

DSO 1

DSO 2
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tehottomuutena. Jotta tuloksia voidaan verrata DEA-menetelmään, tämä tehottomuus on 
tulosten arvioinnissa muutettu suhteelliseksi tehokkuusluvuksi. Yhtiön i tehokkuusluku Ei 
lasketaan siten seuraavasti: Ei = C(yi) / [C(yi)+ ui]. 

Käytännössä SFA-malli estimointi vaatii erityisen ohjelmiston. Mallin estimointi voidaan tehdä 
erityisesti tähän tarkoitukseen rakennetuilla ohjelmistoilla kuten LIMDEP2 ja Frontier3. Nämä 
tarjoavat helpoimman tavan laskea SFA-tuloksia. Toisaalta SFA-malleja voidaan estimoida yleisillä 
tilasto-ohjelmilla kuten R, S, SAS tai GAMS.  

Rinnakkaisen mallin rakentaminen 
Rinnakkaisen SFA-menetelmään perustuvan mallin rakentamisessa testattiin lukuisia panos-
tuotos-yhdistelmiä sekä funktiomuotoja. Käytännössä panosten ja tuotosten ja funktiomuodon 
valintaan on tarkasteltu samanaikaisesti perustuen yhteensä 24 tuotos-panos-yhdistelmään ja 
neljään perusfunktiomuotoon. Seuraavassa tuloksia tarkastellaan kuitenkin selkeyden vuoksi 
erikseen panosten ja tuotosten valinnan sekä funktiomuodon valinnan osalta.  

Panos- ja tuotostekijät 
Tämän osaprojektin ensisijaisena tavoitteena ei ole ollut tarkastella kattavasti mahdollisia tuotos- 
ja panostekijöitä. Näihin tekijöihin ei tällä hetkellä ole katsottu liittyvän keskeisiä 
kehityskysymyksiä. Siten tekijöiden valinnan pohjana oleva joukko on perustunut DEA-
menetelmään pohjautuneisiin tutkimuksiin, kuten Korhonen et al. (2000) ja samanaikaisesti 
käynnissä ollut osaprojekti A. Hankkeessa on kuitenkin testattu useita panos-tuotos-yhdistelmiä.   

Panosten osalta hankkeessa on tarkasteltu neljää vaihtoehtoista panostekijää, jotka ovat 
koostuneet operatiivisista kustannuksista (opex), poistoista (depreciation) ja KAH-arviojen 
pohjalta määritellyistä keskeytyskustannuksista (interruption costs). Kokeiltujen mallien 
perusteella kaikki kolme kustannuskomponenttia sisältävä panostekijä toimii mallin estimoinnissa 
hyvin.  

Tuotospuolella lähtökohtana ovat olleen tällä hetkellä käytössä olevan DEA-mallin tuotostekijät. 
Tuotostekijöiden joukon laajentamista rajoittaa saatavissa olevan aineiston määrittely. 
Tuotostekijöinä on käytetty siirretyn energian arvoa (value of energy), verkostopituutta (total 
network length) sekä asiakasmäärää (No. of customers). Näiden lisäksi on tarkasteltu 
vaihtoehtona verkoston jälleenhankinta-arvon käyttöä verkostopituuden sijaan. Jatkossa 
tuotosjoukkoa voitaisiin laajentaa esim. jakamalla verkostopituus kaapeli- ja ilmajohtoverkkoon. 

Aineiston analyysissä nykyisin DEA-mallissa käytössä oleva tuotosjoukko todettiin tarkasteltujen 
vaihtoehtojen joukossa hyvin toimivaksi.  

Mallin funktiomuoto 
Hankkeessa testattiin useita funktiomuotoja. Seuraavassa on esitetty eri funktiomuotoja koskevat 
johtopäätökset.  

                                                 

2 Lisätietoa osoitteesta http://www.limdep.com/ (englanniksi) 
3 Frontier-ohjelmisto on saatavissa käyttöön korvauksetta. Lisätietoa osoitteesta 
http://www.uq.edu.au/economics/cepa/frontier.htm (englanniksi) 
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Yksinkertaisimpana mallirakenteena testattiin tavallista lineaarista mallia xi = b0 + b1y1i + b2y2i. 
Sen etuna on yksinkertainen tulkinta, mutta funktiomuoto voi olla liian yksikertainen kuvaamaan 
todellista kustannusrakennetta. Lineaarisen mallin suurin ongelma liittyy aineistossa esiintyvään 
heteroskedastisuuteen eli siihen, että euromääräinen poikkeama tehokkaasta kustannustasosta on 
luonnostaan suurempi suurille yhtiöille. Koska mallin estimoinnissa huomioidaan juuri 
euromääräinen tehottomuus, lineaarisen mallin käyttöä johtaa erikokoisten yhtiöiden kannalta 
selvästi epätasapainoiseen tulokseen, eikä sen käyttöä voi suositella.   

Toisena mallirakenteena testattiin loglineaarista mallia, jossa aineistosta on otettu logaritmit. 
Mallin rakenne on siten lnxi = b0 + b1lny1i + b2lny2i. Tämä mallirakenne ratkaise 
heteroskedastusuuteen liittyvän ongelman ja malli toimii tilastollisesti hyvin. Malliin liittyy 
kuitenkin keskeinen käsitteellinen ongelma, sillä tuotantomahdollisuuksien joukko ei ole konveksi, 
eli kahden tehokkaalla rintamalla sijaitsevan tuotos-panos-pisteen yhdistelmä ei kuulu 
tuotantomahdollisuuksien joukkoon. Tästä syystä mallin käyttöä ei voi suositella.  

Kolmantena ja joustavimpana funktiomuotona tarkastelussa oli translog malli: lnxi = b0 + b1lny1i 
+ b2lny2i + 0.5b11(lny1i)2 + 0.5b22(lny2i)2 + b12lny1ilny2i. Tämä funktiomuoto on äärimmäisen 
joustava ja tarjoaa siten teoreettisesti hyvä lähtökohdan. Mallin tilastollisiin ominaisuuksiin liittyy 
kuitenkin niin merkittäviä ongelmia, ettei malli ole tässä tapauksessa käyttökelpoinen.  

Neljäntenä tarkasteltuna funktiomuotona oli normeerattu lineaarinen malli, joka huomioi 
aineistossa esiintyvän heteroskedastisuuden. Estimoitu malli oli tässä tapauksessa siis muotoa 
xi/y1i= b0/y1i + b1y1i/y1i + b2y2i/y1i. Normeerauksen, eli data jakamisen tuotostekijällä, tavoitteena 
on huomioida se, että euroissa mitattu tehottomuus ja satunnaisvaihtelu riippuvat yhtiön koosta. 
Käsitteellisesti malli on yhtenevä lineaarisen mallin kanssa, mutta se toimii käytännössä 
huomattavasti paremmin niin tilastollisesti kuin käytännön näkökulmasta. Tulokset ovat hyvin 
linjassa DEA-menetelmän tulosten kanssa. Testatuista funktiomuodoista tämä näyttää, 
mahdollisesta liiallisesti yksinkertaisuudestaan huolimatta, toimivan parhaiten. 

Suositeltava mallirakenne 
Eri mallivaihtoehtojen analyysin perusteella hankkeessa päädyttiin suosittelemaan panostekijäksi 
operatiiviset kulut, poistot ja keskeytyskustannukset sisältävää kokonaiskustannusta. 
Tuotospuolella suositellaan käytettäväksi nykyisen DEA-mallin tuotoksia eli siirretyn energian 
arvoa, verkostopituutta sekä asiakasmäärää. Funktiomuodoksi suositellaan lineaarista 
funktiomuotoa, joka estimoidaan normeerattuun dataa perustuen. Riippuen DEA-menetelmässä 
tehdystä skaalatuotto-oletuksesta malli voidaan estimoida joko perusmuodossaan nousevien 
skaalatuottojen oletuksen mukaisena (sisältäen vakiotermin) tai vakioskaalatuottoisena (ilman 
vakiotermiä). 

Perusmallivaihtoehto voidaan siis esittää seuraavasti 

kokonaiskustannus = 132 + 0,26 energia-arvo + 0,66 verkkopituus + 0,06 asiakasmäärä 

Kokonaiskustannus tuhansissa euroissa riippuu mallin mukaan siis tuotostekijöistä siten, että 
kaikilla yhtiöillä on yhteinen 132 tuhannen euron peruskustannus, jonka lisäksi jokainen lisäeuro 
energia-arvossa nostaa kuluja 26 sentillä, jokainen verkkokilometri 660 eurolla ja jokainen asiakas 
60 eurolla.   

Tässä perusmallissa ei skaalatuottoa koskien ole tehty ennakko-oletuksia. Positiivinen 
peruskustannus vastaa kasvavia skaalatuottoja eli pieniä yhtiötä koskevaa skaalahaittaa. Malli 
vastaa siten nousevien skaalatuottojen (non-decreasing returns to scale, NDRS) DEA-mallia. 
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Mikäli käytetään vakioskaalatuottoista (constant returns to scale, CRS) DEA-mallia, SFA malli 
voidaan estimoida ilman vakiotermiä, jolloin skaalatuotto-oletukset ovat vastaavat.   

Tässä tapauksessa tuloksena on seuraava malli.  

kokonaiskustannus = 0,27 energia-arvo + 0,78 verkkopituus + 0,06 asiakasmäärä 

Edellä esitettyyn malliin verrattuna lähinnä verkkopituuden kerroin muuttuu poistettaessa mallista 
peruskustannuksen määräävä vakiotermi. Nyt yhden verkostokilometrin kustannusvaikutus on 
780 €/km.  

Vaikka vakiotermi on tilastollisesti merkitsevä perusmallissa, keskeinen johtopäätös on se, että on 
käytettävä sitä SFA-mallia, joka vastaa vertailukohtana olevaa DEA-mallia. Vakioskaalatuottoisen 
DEA-mallin kanssa on siten käytettävä jälkimmäistä vakioskaalatuotto-oletukseen perustuvaa 
SFA-mallia ja vastaavasti kasvavien skaalatuottojen DEA-mallin kanssa perusmallia.   

Tarkasteltaessa suositellun mallin tuottamia tehokkuuslukuja, havaitaan, että SFA-mallin 
tuottamat tehokkuusluvut ovat useimpien yhtiöiden tapauksessa korkeampia kuin vastaavat 
DEA-luvut. Kuvassa 2 on esitetty samoihin tuotos- ja panostekijöihin perustuvien 
vakioskaalatuottoisen DEA- ja SFA-mallin tulokset järjestettynä DEA-mallin tuottamien 
tehokkuuslukujen mukaiseen järjestykseen. 
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Kuva 2  SFA- ja DEA-tehokkuuslukujen vertailu, vakioskaalatuotto 

 

SFA-mallin stabiiliuden tarkastelu tehtiin aineiston rajoitteiden vuoksi vuosien 2003 ja 2004 välillä 
käyttäen mallia, jossa panoksena olivat suositellusta mallista poiketen vain operatiiviset kulut. 
Tulokset osoittivat, että SFA tarjoaa selvästi vakaamman pohjan vertailulle kuin DEA. 
Tehokkuusluvuissa tapahtuneet muutokset selittyivät suurimmaksi osaksi yhtiöiden omissa 
lähtötiedoissa tapahtuneilla muutoksilla. Rintaman muutokset vuosien välillä olivat pieniä. 
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Suositellun mallin tasapuolisuus 
Suositellun SFA-mallin toimivuutta tarkasteltiin useiden tekijöiden suhteen. Kahden malliversion 
tuottamia tehokkuuslukuja verrattiin seuraaviin tekijöihin: 

• Kokonaiskustannukset, joita käytettiin mallin panostekijänä, koon indikaattorina  

• Keskijänniteverkon (6-70 kV) kaapelointiaste erottelemassa taajama- ja maaseutuyhtiöitä  

• Operatiivisten kustannusten ja poistojen suhde kuvaamassa verkon arvoa ja operatiivisia 
kuluja kuvaavia erialisia strategioita  

• Asiakaskohtaisia keskeytyskustannuksia kuvaamaan keskeytysten taustalla olevia erilaisia 
olosuhteista.  

Tuloksista voidaan esittää seuraavat keskeiset johtopäätökset. 

• Perusmalli suosii lievästi pieniä yhtiöitä ja vastaavasti vakioskaalatuottomalli suuria 
yhtiöitä. Tekijöiden välinen riippuvuus ei kuitenkaan ole tilastollisesti merkitsevä. 

• Kaapelointiaste selittää tehokkuuslukuja tilastollisesti merkitsevällä tasolla. Molemmat 
malliversiot suosivat lievästi matalan kaapelointiasteen yhtiöitä. Tehokkuus putoaa 
kesimäärin yhden prosenttiyksikön kaapelointiasteen lisääntyessä 10 prosenttiyksikköä.  

• Tasapuolisuuden näkökulmasta sekä perusmalli että vakioskaalatuottomalli ovat yhtä 
toimivia.  

Tasapuolisuuden näkökulmasta malli näyttää toimivan tyydyttävästi. Kuitenkin yksinkertainen 
funktiomuoto tuottaa yksikertaisemman kuvauksen tuotosten ja panoksen riippuvuudesta kuin 
DEA-menetelmä samoilla tuotos- ja panostekijöillä. Jatkossa tulisi tarkastella mallin tarkentamista 
siten, että se huomioi tarkemmin taajama- ja kaupunkiyhtiöiden kustannusajurit. Tällä hetkellä 
käytössä ollut aineisto ei tarjonnut hyviä lähtökohtia asian ratkaisemiseen. Yhtenä ratkaisuna 
voitaisiin tarkastella mahdollisuutta jakaa verkkopituus kahdeksi tuotostekijäksi – kaapeliverkoksi 
ja ilmajohtoverkoksi.  

Tulosten soveltaminen 
Kun SFA tulosten käytöstä valvonnassa päätetään, useita kysymyksiä täytyy ratkaista. 
Ensimmäinen näistä on se, sovelletaanko SFA lukuja varsinaisessa valvonnassa ja jos sovelletaan, 
miten ne yhdistetään DEA-lukuihin. Raportissa on alustavasti tarkasteltu DEA ja SFA tulosten 
yhdistämistä laskemalla keskiarvo, tai ottamalla korkeampi tai matalampi tehokkuusluvuista. 
Näistä vaihtoehdoista keskiarvon laskeminen on tulosten kannalta paras vaihtoehto. Eri 
lähestymistapoja tulisi kuitenkin tarkastella perusteellisesti ennen päätöksen tekoa.  

Asetettaessa tehostamistavoitetta DEA- tai SFA-tulosten perusteella keskeinen kysymys on se, 
miten tehokkuusluku muutetaan tehostamistavoitteeksi. Tämän hankkeen tavoitteena ei ole ollut 
esittää mallia tehostamistavoitteen asettamiseksi. Sen asettamisessa on kuitenkin huomioitava 
operatiivisten ja pääomakustannusten muuttamiseen liittyvät erilaiset aikajänteet. Haasteena tässä 
on se, että tehokkuuden arvioinnissa panostekijät on yhdistetty ja malli tuottaa yhden 
tehokkuusluvun. Lähtökohtana tehokkuustavoitteiden asettamisessa voitaisiin käyttää sitä, että 
arvioidaan eri kustannuskomponentteihin liittyvän tehottomuuden poistamiseen kuluva aika ja 
lasketaan tämän perusteella vuosittain poistettavissa olevan tehottomuuden osuus. Koska 
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yhtiöiden välillä on eroja operatiivisten ja pääomakustannusten suhteessa, operatiivisten 
kustannusten ja poistojen välistä suhdetta voitaisiin käyttää indikaattorina eri kustannuserien 
painottamisessa. Kuitenkin myös tässä tapauksessa eri lähestymistapoja on analysoitava 
perusteellisesti ennen mallin käyttöä hinnoittelun valvonnassa. Tehostamistavoitteen 
asettamisessa neljän vuoden valvontajaksolle on myös tarkasteltava mahdollisuutta käyttää 
useamman vuoden lähtötietoja tasaamaan tietojen vuosittaista vaihtelua.  

SFAn ja DEAn tuottamia tuloksia verrattaessa havaitaan, että keskeisenä erona on edellä esitetyn 
funktiomuodossa esitettävän tehokkaan rintaman lisäksi se, että SFA-mallissa panos- ja 
tuotostekijöillä on suoraviivainen tuotantofunktiosta laskettavissa oleva vaikutus 
tehokkuuslukuun. On kuitenkin huomattava, että SFA-mallissa etäisyys rintamaan jaetaan 
tehottomuuteen ja satunnaisvaihteluun ja siten malli tulee periaatteessa estimoida uudestaan aina 
aineiston muuttuessa. Tarkasteltaessa pieniä muutoksia voidaan kuitenkin olettaa, että 
satunnaisvaihtelun sisältävän termin vi muutokset ovat pieniä. Tällöin uusi tehokkuusluku voidaan 
kustannustason muuttuessa laskea suoraan seuraavasta kaavasta. 

Ei,uusi = C(yi) / (xi,uusi – xi – C(yi)/Ei), 

Kaavassa E viittaa yhtiön tehokkuuslukuun, C(yi) yhtiön i tuotoksilla laskettuun tehokkaaseen 
kustannukseen ja xi yhtiön i kustannustasoon. Alaviite uusi viittaa uusin arvoihin muutosten 
jälkeen. Myös tuotosten marginaalisia muutoksi voidaan tarkastella laskemalla tehokas 
kustannustaso kaavan osoittajassa uusien tuotosten perusteella.  

Hankkeen tulokset osoittavat, että SFA-menetelmä soveltuu suomalaiseen valvontajärjestelmään 
käytettäväksi DEA-menetelmän rinnalla. Kuitenkin mallin tarkat parametrit ja yhtiökohtaiset 
tehokkuusluvut tulee arvioida uudelleen viimeisimmän aineiston perustella ennen mallin 
käyttämistä varsinaisessa valvonnassa. Samalla on huomioitava aineiston määritelmissä 
tapahtuneet muutokset kuten keskeytysaikojen muuttunut tilastointi. Myös mallin soveltamiseen 
liittyvät vaihtoehdot tulee analysoida perusteellisesti ennen mallin mahdollista käyttöä 
valvontajärjestelmän osana.  



 11

1 Introduction  
The Energy Market Authority (EMV) supervises and promotes functioning of the electricity 
markets in Finland. As a part of this task it is responsible for supervising the terms and prices of 
electricity network services. The amendment of the Electricity Market Act in 2004 caused 
significant changes in the supervision system. In the new regulatory system introduced for the 
first regulatory period in 2005-2007, the reasonableness of the pricing is supervised on the basis 
of variety of methods that aim at defining reasonable capital and operational costs of the 
distribution system operators (DSOs).  

EMV has launched a development project where it aims at revising the new regulatory system for 
the next period 2008-2011 and getting better understanding of those factors that affect 
distribution business but cannot be taken into account in the monitoring of the reasonableness of 
the pricing. The project includes, among others, tasks for developing the efficiency measurement 
model for electricity distribution, presenting a plan for assessing the long-term efficiency 
improvement potential of the DSOs, introducing company specific efficiency improvement 
targets, and assessing the incentive impact of various models and procedures.  

As a part of this development project EMV has commissioned studies that aim at developing the 
efficiency measurement of DSOs. Study A aims at further developing the efficiency measurement 
model based on the DEA method, and study B aims at developing an analogous alternative 
efficiency measurement model. More specifically study B aims at defining a second efficiency 
measurement model that can be used for controlling the results of the DEA model. The purpose 
is to develop a model that EMV can use independently for verifying the efficiencies and 
efficiency improvement potentials of individual companies. The method and specification will be 
selected and motivated during the study.  

This report is the final report of study B. The report includes a review of the Finnish regulatory 
system where the developed model is aimed to be included, presents a literature review of 
alternative efficiency analysis approaches, especially Stochastic Frontier Analysis (SFA) and 
discusses the ways the alternative model can be used. The key finding in this part is that 
Stochastic Frontier Analysis (SFA) is the most suitable alternative to Data Envelopment Analysis 
(DEA). Furthermore, the report describes the analysis process that was used for building the 
analogous efficiency analysis model based on SFA, presents the conclusions from the analysis of 
various alternative models and gives a recommendation on the model variant to be used. The 
regulatory implications related to the recommended model are also analysed.  

The report is structured as follows. Section 2 presents the results of the literature review. Section 
2.1 discusses the current Finnish regulatory system. Section 2.2 discusses possible efficiency 
evaluation approaches, and section 2.3 provides a model detailed introduction to SFA. Section 
2.4 shortly discusses the various ways of using the alternative model based on the Norwegian and 
Austrian experiences. Section 3 provides the main results related to choosing the model 
specification to be used in the analogous model. The regulatory implications of the 
recommended model are analysed in Section 4. Finally, section 5 presents a short summary of the 
conclusions and recommendations. 
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2 Review of  the regulatory framework and efficiency analysis 
methods 

2.1 Finnish regulatory framework 

2.1.1 Introduction 
The reform and deregulation of the Finnish electricity market started in 1995. After the new 
Electricity Market Act (386/1995) entered into force, the deregulation of the electricity market 
has taken place in stages. Production, sales and foreign trade have been opened for competition, 
and transmission and distribution defined as natural monopolies. Finland has joined the Nordic 
electricity market; networks have been opened to all the customers; production, retail sales and 
distribution were unbundled; and transmission was centralized to one company.  

This study concentrates on the regulation of local distribution system operators (DSOs) that are 
responsible for electricity distribution at the local level. The networks mainly consist of 20 and 
0.4 kV lines. Some distribution companies have 110 kV lines and power stations, and also other 
voltage levels are used in some cases.  

Along with the structural development, the number of DSOs has decreased drastically from the 
original 200 companies in the past 20 years. Currently, there are 91 distribution network 
operators (EMV, 2005). Fortum and Vattenfall are the biggest distribution companies.   

The Energy Market Authority4 (EMV) was established to supervise the functioning of the 
deregulated electricity market and electricity network operations. EMV is a subordinate to the 
Ministry of Trade and Industry.  

2.1.2 Legislative framework and key institutions 
The primary purpose of the Energy Market Act (386/1995) is to ensure preconditions for an 
efficiently functioning electricity market and to secure sufficient supply of high-standard 
electricity at reasonable prices. The primary means for this are to secure a sound and well-
functioning economic competition in electricity production and sales, and reasonable and 
equitable service principles in the operation of electricity networks. The act entered into force in 
1995, and minor amendments were made during the years (1018/1995, 332/1998, 138/1999, 
466/1999, 623/1999, 444/2003, 1130/2003). In 2004, the act went through a major reform 
(1172/2004). 

The act (9 - 10 §) obliges the distribution companies to  

1) Transmit the energy that the customers in the area need against a reasonable 
compensation 

2) Connect all the customers – consumers and producers – to the network against a 
reasonable compensation 

3) Develop the network in accordance with customer needs and so that sufficiently high 
quality and reliability are achieved.  

                                                 

4 until year 2000 the Electricity Market Authority 
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The main focus in the development of the regulation system has been the reasonableness of the 
pricing. In the 2004 reform, the supervision of the distribution prices moved from yearly case-by-
case ex-post approach to partly ex-ante supervision that covers all the companies and is based on 
regulatory periods of 3-4 years. One of the main purposes was to meet the EU requirement of 
defining the methodology of the regulation in advance and processing times. In the future, the 
companies are obliged to return to the customers any excess profit for the completed regulatory 
period through pricing in the next regulatory period. Also the rules for unbundling were 
tightened and the Market Court was introduced as the first step in the appeal process. 

The Electricity Market Decree (518/1995, and amendments 451/1997, 438/1998, 182/2004, 
1174/2004) includes more specific rules and regulations on the electricity network licenses and 
responsibilities of the license holders, the construction of networks, retail sale of electricity, and 
balance responsibility and balance determination. Also the decree was refined in 2004.  

In addition to the Energy Market Act and Decree, the Ministry of Trade and Industry has given 
specific ministerial decrees and decisions on the unbundling of electricity business activities, 
instruction on reporting obligations, use of load profile system, invoicing, terms of connecting 
etc.  

EMV has the responsibility of implementing the rules and regulations set by the legislation and 
the ministry. The authority has the responsibility for making many decisions related to the actual 
implementation of the regulation system and make decisions whether the companies operate 
according to the set rules. 

The key trend since the deregulation of the market has been gradual tightening of supervision. 
New issues have been added to the regulation system and regulation has become more detailed. 
The next sub section discusses the actual changes.   

2.1.3 Regulatory system 
The current regulatory model is based on the guidelines for reforming supervision of electricity 
and gas network operations that were set out in a report of the Ministry of Trade and Industry 
working group for reform of regulation of pricing in the energy market. The actual system was 
developed by EMV and it is introduced in a separate document that forms the basis for the 
methodology decisions given prior the start of the regulatory period. (EMV, 2004b)  

The current system is based on an ex-post rate of return regulation. In addition, the operational 
costs must be reasonable. This interpretation is based on the Electricity Market Act and its 
preambles. 

The first and still applicable part of the regulation is the rate of return regulation. Initially, the rate 
of return was supervised based on one year periods. The reasonable rate was based on adjusted 
financial statements and a Weighted Average Cost of Capital (WACC) model. The first decision 
on the return level was made in 1999 (case Megavoima Oy) and the Supreme Administrative 
Court confirmed this decision, and hence the used approach and the power of EMV, in 2000. 

After the implementation of the rate of return regulation, EMV developed a model for ex-post 
yardstick regulation of operational costs. The levels of reasonable operational costs were defined 
on the basis of a DEA model (Korhonen et al. 2000). Excess costs were interpreted as profit in 
the early ex-post evaluation of the rate of return. Eventually, this model was used only in cases 
where the network operators benefited from it, and the system for supervising operational costs 
was completely reformed in 2004. 
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In the last reform in 2004 many components of the regulation were changed. The rate of return 
is regulated based on the same basic principles but many details like rules for depreciation 
changed. Regulatory periods were introduced and the first period is 2005-2007. A new approach 
to the regulation of costs was introduced, and now the reasonable cost level is based on a cost 
cap. The current model also includes an obligation to return the excess profit to the customers 
during the following period instead of just changing the tariffs after the supervision decision. On 
the other hand, the system allows higher return during the next regulatory period if the return has 
been below the reasonable earnings level. The reasonable earnings level will be calculated on the 
basis of amount of capital, reasonable rate of return, and adjusted profit and loss account.   

In the beginning of the first regulatory period, the amount of capital is defined based on the net 
present value (NPV) of the network. This is calculated by multiplying the replacement value of 
the components by the ratio of the average age and the holding time (i.e. straight-line 
depreciation). The replacement value is dependent on the type of component and the 
environment (urban, semi-urban or rural), and the holding time of the component groups can be 
chosen within certain limits. For the two following years, the net present value is adjusted based 
on straight line depreciation and actual investments (valued with standard prices). Other assets 
related to network business are valued at book value, and financial assets are excluded.  

The reasonable rate of return is based on a Weighted Average Cost of Capital (WACC) model. 
The reasonable rate of return on equity is calculated on the basis of a Capital Asset Pricing (CAP) 
model, i.e. reasonable rate is risk free rate + levered beta factor multiplied by a market risk 
premium. In the implemented model, the risk free rate corresponds to the 5-year Finnish 
government bond. The levered beta is 0.395 or 0.429 depending on the ownership (i.e. taxes) of 
the company, and the market risk premium is 5%. The reasonable rate for dept is risk free + 
0.6%. The capital structure is assumed to correspond to dept/asset ratio 30/70 for all the 
companies. The reasonable rate is calculated separately for each year. For example for year 2005, 
it is based on government bond May 2004 average, which is 3.53%. When the WACC model is 
applied to the rates and capital structure above, the reasonable rate of return on the total assets in 
2005 is 4.77% or 5.21% depending on the ownership.  

The acceptable costs are based on a cost cap, which is defined ex-ante based on the historical 
operational costs of the company and a CPI-X factor. The X-factor is based on industry level 
productivity development (frontier shift) and was defined with a DEA based Malmquist analysis. 
The X factor is 2.2% and the price index (actually industrial production price index) has changed 
0.9% p.a. on average in 1995-2002. The reference cost levels in the CPI-X model are the average 
operational costs in 2000-2003. If the volume of the operations has changed, the cost level is 
corrected on the basis of the change in the network volume and number of customers. The 
current model does not include a company specific component in the X-factor. This is one of the 
important development areas. 

During the regulatory period, EMV makes yearly calculations for all the companies, but the 
official supervision decisions will be made only after the end of the period. Hence the actual 
decisions that are based on rules described above are made ex-post. Customers have no real role 
in the regulation of rate of return and costs, as all the companies are automatically supervised by 
EMV. In the new system, the case by case discretion has decreased. However, there is still some 
flexibility in defining the asset base and this is a potential source of conflict. 

In the decision, EMV can oblige the company to change its tariffs so that these are reasonable 
and the windfall profits from the previous period will be compensated for. The company will 
make the actual decision concerning the tariff levels and tariff structure.  
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2.1.4 Development issues  
In 2005 EMV launched a development project to further develop the current regulation system. 
As a part of the project three external sub-projects related to efficiency measurement of DSOs 
have been commissioned. Study A aims at further developing the efficiency measurement model 
based on the DEA method. This study concentrated on four main aspects: 1) how technical 
quality of the distribution will be included in the DEA based efficiency evaluation and the 
regulation system in general; 2) how investments and capital costs are included in the efficiency 
evaluation and regulation system; 3) how the model should be developed so that the long term 
efficiency improvement potential during the regulatory period can be defined; and 4) how 
exceptional companies should be treated in the DEA model. Study B aims at developing an 
analogous alternative efficiency measurement model. The model should provide a comparison 
point for the new model developed in study A.5 Finally study C concentrates on exploring the 
possibilities to take customer service into account in the supervision of the reasonableness of the 
pricing in the future.  

In the next regulatory period, EMV aims at introducing a company specific X-factor that would 
reflect the efficiency improvement potential of the company. If we look at studies A and B from 
the regulatory system point of view, one of the key goals is to develop a yardstick approach for 
defining a company specific X-factor for the next regulatory period. Furthermore, the current 
regulatory model (described in section 2.1) does not take quality into account. (There is a separate 
compensation scheme, however). Hence study A includes also a wider perspective of developing 
the whole regulation system. However, EMV has the main responsibility for deciding on the way 
the efficiency scores will be transformed into X-factors.  

The objective of study B is to develop and define a secondary efficiency measurement model that 
can be used for controlling the results of the DEA model used by EMV. Decisions on the actual 
way of using the results in regulation will be made by EMV based on the internal development 
project the runs in parallel with the efficiency benchmarking projects. The aim is that the 
secondary model could be used in parallel with the DEA model in the actual regulation. Hence 
the data and specifications used the DEA model will serve as a comparison point for the 
alternative model. However, the actual model that will be used in regulation has not been defined 
yet, and study A will propose changes especially related to capital costs and quality. Hence the 
results of study A will describe the regulatory context where the alternative efficiency evaluation 
model will be applied. 

The current plan is that the DEA model and the alternative model would be used in setting the 
company specific component of the X-factor. Currently the X-factor in the model is applied to 
controllable operational expenditure (opex) and it does not include a company specific 
component. In the future the X-factor may be applied to controllable opex, capital costs and 
quality costs caused for customers (interruption costs). The decisions on the actual use of the 
models will be made by EMV after the projects have been finished.  

                                                 

5 Studies A and B have been implemented in parallel. The results of study A are presented in a report by Honkapuro, 
Tahvanainen, Viljainen, Lassila, Partanen, Kivikko, Mäkinen, Järventausta (2006)  

 

. 
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The main concern in study B is the potential estimation error caused by DEA method, and hence 
the model specifications would ideally be analogical to the DEA model that will be used in 
regulation. However, the method and specifications should be motivated and validated 
independently. Identification of problems in the model structure or data is a secondary objective. 
The basic principle is that the results of study B will be public, but the decisions on the way of 
applying the results and the possible future use of the alternative model will be decided later by 
EMV.  

2.2 Possible efficiency evaluation approaches 

2.2.1 Overview 
At a general level, one can distinguish between parametric and non-parametric models on the one 
hand and between stochastic and non-stochastic models on the other. We first discuss the 
different types of benchmarking models and we briefly summarize their pros and cons. The main 
purpose is to offer a discussion of some of the factors that we consider to be of particular 
importance in regulatory applications. The vast number of scientific papers on frontier analysis in 
general and DEA methods in particular6 prohibits a balanced and comprehensive coverage of 
benchmarking approaches within any project.  

Parametric versus non-parametric 

In the modern benchmarking literature parametric models are characterized by being defined a 
priori except for a finite set of unknown parameters that are estimated from data. The parameters 
may refer to the relative importance of different cost drivers or to the parameters in the possibly 
random noise and efficiency distributions. The non-parametric models are characterized by being 
extremely flexible in terms of the production economic properties that they invoked. Only a 
broad class of functions – or even production sets – are fixed a priori and data is used to estimate 
one of these. In this case, the classes are so broad as to prohibit a parameterization in terms of a 
limited number of parameters. 

Deterministic versus stochastic models 

Stochastic models are the most flexible in terms of the assumptions one can make about data 
quality. One makes a priori allowance for the fact that the individual observation may be affected 
by random noise, and tries to identify the underlying mean structure stripped from the impact of 
the random elements. In deterministic, i.e. non-stochastic models, the possible noise is 
suppressed and any variation in data is considered to contain significant information about the 
performance of the unit and the shape of the technology. The deterministic approaches therefore 
presume data of good quality. On the other hand, in terms of the model structure, the non-
parametric deterministic approaches are the most flexible ones. 

Taxonomy 

The two dimensions leads to a 2x2 taxonomy of methods as illustrated in Table 2.1 below. A few 
original key references are included. 
                                                 

6 There are by now more than 1000 scientific papers and numerous text books focusing on frontier models, c.f. the 
bibliography on www.deazone.com.  
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Table 2.1 Model taxonomy 
 Deterministic Stochastic 

Pa
ra

m
et

ric
 

Corrected Ordinary Least Square 
(COLS) 

Greene (1997), Lovell (1993), Aigner 
and Chu (1968) 

Stochastic Frontier Analysis (SFA) 

Aigner, Lovel and Schmidt (1977), 
Batesee and Coelli (1992), Coelli, Rao 
and Battesee (1998) 

N
on

-P
ar

am
et

ric
 Data Envelopment Analysis (DEA) 

Charnes, Cooper and Rhodes (1978), 
Deprins, Simar and Tulkens (1984) 

Stochastic Data Envelopment 
Analysis (SDEA) 

Land, Lovell and Thore (1993), Olesen 
and Petersen (1995), Weyman-Jones 
(2001) 

 

We emphasize that for each class of model, there exist a large set of model variants 
corresponding to different assumptions about the production technology, the distribution of the 
noise terms etc. We will discuss some of the key assumption below. We presume a basic 
knowledge of these models here and do not explain them in detail. We simply recall the 
differences in a simple cost modelling context. The setting then is that we seek to model the costs 
that results when best practice is used to produce one or more outputs. 

Figure 2-1 illustrates the approaches. Corrected ordinary least square (COLS) corresponds to 
estimating an ordinary regression model and then making a parallel shift to make all units be 
above the minimal cost line. Stochastic Frontier Analysis (SFA) on the other hand recognizes that 
some of the variation will be noise and only shift the line – in case of a linear mean structure – 
part of the way towards the COLS line. Data Envelopment Analysis (DEA) estimates the 
technology using the so-called minimal extrapolation principle. It finds the smallest production 
set (i.e. the set over the cost curve) containing data and satisfying a minimum of production 
economic regularities. Assuming free disposability and convexity, we get the DEA model 
illustrated in Figure 2-1. Like COLS, it is located below all cost-output points, but the functional 
form is more flexible and the model therefore adapts closer to the data. Finally, Stochastic DEA 
(SDEA) combines the flexible structure with a realization, that some of the variations may be 
noisy and only requires most of the points to be enveloped. 
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Figure 2.1 Benchmarking methods (example)  

 

In Figure 2.1 we have included a fifth frontier, termed engineering. The idea is to base the 
modelling on data from engineers about best possible performance, perhaps in idealized settings. 
This is often applicable for example when modelling an industrial production process. An 
advantage of this approach in regulation is that the benchmark norm cannot be affected by the 
evaluated unit. Also, if properly developed, it may possibly reflect in more details the operating 
environments of the different DSOs. A drawback of the approach is that it is very expensive to 
develop. In the case of electricity distribution a key challenge would be to understand and model 
the non-technical processes. Moreover, and probably more importantly, the historical conditions 
are difficult to include such that DSOs will tend to be evaluated as if past decisions were taken 
based on present information about technology, distribution of load and generation etc. 

Advantages and disadvantages 

We will now focus on the advantages and disadvantages of these methods in general, and in 
particular their relative merits in a regulatory context. 

Some of the strengths of non-parametric and deterministic methods like DEA include 

• Requires no or little preference, price or priority information 
• Requires no or little technological information 
• Makes weak a priori assumptions 
• Handles multiple inputs and multiple outputs 
• Provides reel peers 
• Identifies best practice 
• Cautious or conservative evaluations (minimal extrapolation) 
• Supports learning and in some cases planning and motivation 
• Game theoretical foundation of the industry-regulator relation 
 

Some of the strengths of parametric and stochastic methods like SFA are 
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• Strong theory of significance testing (sensitivity, re-sampling, bootstrapping, asymptotic 
theory) 

• Separates noise and efficiency 
• May leave lower rents when functional form known 
• Creates anonymous peers, may be relevant in regulation 
 

As indicated, the different approaches have different advantages and disadvantages. From a 
regulator’s viewpoint, the relative importance of these merits depends on the overall regulatory 
approach (cf. Agrell and Bogetoft, 2003a), i.e., the role assigned to the model among the 
regulatory instruments. 

In the Finnish case EMV has identified the following weaknesses in the DEA model. Specifically 
the potential estimation errors caused by noise in the data have been identified when the year-to-
year fluctuations of the efficiency scores have been analysed. Furthermore some problems related 
to exceptional units have been identified. Finally the argumentation behind the choice of inputs, 
outputs and environmental factors would benefit from more formal analysis.  

In our view, a fundamental difference from a general methodological perspective and from 
regulatory viewpoint is the relative importance of flexibility in the mean structure vs. precision in 
the noise separation. This means that there are basically two risks for error that cannot be 
overcome simultaneously. These are 1) risk of specification error, and 2) risk of data error.  

Specification error is related to the inability of the model to reflect and respect the real 
characteristics of the industry. Avoiding the risk of specification error requires a flexible model in 
the wide sense. This means that the shape of the model (or its mean structure to use statistical 
terms) is able to adapt to data instead of relying excessively on arbitrary assumptions. The non-
parametric models are by nature superior in terms of flexibility. 

Data error means inability to cope with noisy data. A robust estimation method gives results that 
are not too sensitive to random variations in data. This is particularly important in individual 
benchmarking – and probably less important in industry wide motivation and coordination 
studies. The stochastic models are particularly useful in this respect. 

It is worthwhile to observe that the two properties may to some extent substitute each other. 
That is, the flexible structure allowed by non-parametric deterministic approaches like DEA may 
compensate for the fact that DEA does not allow for noise and therefore assigns any deviation 
from the estimated functional relationship to the inefficiency terms. Likewise, the explicit 
inclusion of noise or unexplained variation in the data in SFA may to some extent compensate 
for the fact that the structural relationships are fixed a priori, i.e. the noise terms may not only be 
interpreted as a data problem but also as a problem in picking the right structural relationship. As 
an illustration of this we have found in other studies that the SFA efficiencies are often larger 
than the DEA efficiencies as long as the model is somewhat ill-specified., i.e. the inputs and 
outputs are badly chosen. The reason is that SFA in this case assigns the variations to the noise 
term while DEA assigns everything to the efficiency term. As the model is extended to include 
more relevant inputs and outputs, the two methods have been found to produce quite 
comparable results. 

As both advanced non-parametric approaches like stochastic DEA and parametric approaches 
like SFA can be used to solve the practical challenges related to the Finnish regulatory context, 
these two are discussed in more detail below.  
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2.2.2 Non-parametric approaches 
Recent developments in the DEA literature do ease the “statistical” evaluation of DEA results. 
This means that the draw-backs of the DEA method indicated above, viz. significance testing, 
sensitivity to noise, to bias in the parts of the input-output space where the number of 
observations are few etc can now be at least partly overcome. 

To investigate the sensitivity of the DEA model to (changes in) the industry structure, one can 
examine how the efficiency of each unit depends on the other units available. This can be done in 
a systematic way using so-called efficiency step ladders (ESL), see Edvardsen (2004). The idea is 
to investigate the impact for each unit of eliminating one peer unit at a time. 

DEA models provide cautious estimates of the saving potentials and cost inefficiencies. This is 
one of the attractive features of DEA and is part of the theoretical foundation for the optimality 
of DEA based yardstick competition, cf. Bogetoft (1997, 2000) and Agrell, Bogetoft and Tind 
(2004). If the model structure and the variables are chosen correctly, it means that no-one will be 
required to produce at costs that are below the truly minimal ones. The back-side of the 
cautiousness is that the cost efficiency is biased upwards. On average, the units will look more 
efficient than they really are. Moreover, the bias for some units may be larger than for others. 
This means that some distribution companies may be facing tougher norms than others. This is 
an unattractive feature also in regulation since it may prohibit a fair treatment of the different 
units. 

Before getting too concerned it is important to understand the implications. All cost norms 
should suffice by the cautiousness property, but for some units the extra benefits from a biased 
evaluation is more lucrative than for others. Hence, in summary, all units benefit from the doubt 
in the DEA model – but the benefit is not equally distributed among the firms. 

The recent advances in the statistical foundation of DEA allow us to estimate and hereby 
possibly control for the bias. The expected difference between the DEA frontier and the true 
frontier, the efficiency bias (BiasEff) can be calculated by boot-strapping. Combining this with 
the observed efficiencies we get a Bias corrected efficiency (CorrEff), i.e. the efficiency in relation 
to an estimate of the true frontier.  

Bootstrapping also allows us to estimate the standard deviations of the bias corrected DEA 
efficiency estimates. Intuitively, one would expect that the standard deviation of the bias 
corrected efficiency estimates are larger, the more specialized the unit (i.e. the less densely 
populated is the part of the production space where it operates). Instead of using standard 
deviations, one can also and more correctly use the boot-strapped distributions to pick out the 
confidence intervals without presuming normal distributions. 

Stochastic DEA, SDEA, is another way to overcome some of the drawback of standard DEA 
models. The idea of SDEA is that data is noisy and that this should be reflected in the 
construction of benchmarks and costs norms. In a SDEA approach, one would – without 
introducing new a priori assumptions about the underlying “mean” cost structure find the saving 
potential that we are e.g. 95% certain is possible. Although this sounds promising by combining 
the advantages of both the stochastic and the non-parametric approaches, the theory of SDEA is 
still insufficiently developed. The linkage with regulation is not developed, and the technical 
assumptions about noise distributions needed to make practical implementation are very 
restrictive. It is therefore our evaluation, that SDEA is an interesting approach, not the least 
academically, but that it is not yet ready for practical usage in a regulatory context.  
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2.2.3 Parametric approaches 
In the parametric SFA approach, the separation of noise and inefficiency is technically done by 
assuming that the noise is two sided and inefficiency is one sided. Inefficiency makes costs 
increase and makes production fall short of the best possible, while noise may also lower the 
observed costs or increase the observed output. In addition to having one- and two sided 
deviations, the separation of noise and inefficiency is accomplished by making specific 
assumptions about the nature of the distributions, e.g. normal and half normal. 

In the parametric approach, one also makes specific assumptions about the type of relationship 
between the inputs and outputs. The so-called functional form may for example be linear, log-
linear or translog. We shall return to these assumptions below. 

To be more specific, we may distinguish between three combinations of noise and inefficiency. 
Namely pure noise models, pure efficiency models and combined models. In a cost setting, we 
may assume that costs, x, depend on a series of output driver, y, as well as on a combination of 
the inefficiency term u≥0 and the noise term v for each of the DSOs i 

• Pure noise (Ordinary least squares (OLS), average cost function): xi=C(yi) + vi 
• Pure inefficiency (Deterministic frontier): xi=C(yi) + ui 
• Combine (Stochastic frontiers): xi=C(yi)+ ui + vi 

In the specifications above, C(y) is the minimal costs function. It defines the least expensive way 
to provide the outputs y. The functional form of C(y) is given, except for a some unknown 
parameter values β, i.e. one uses C(y,β). The statistical analysis seeks to estimate the functional 
relationship, i.e. β, and to estimate the inefficiencies, i.e. ui.. 

The first of these specifications (OLS) is the specification in classical statistics. It fits a function 
to the data in such a way that the positive and negative deviations are as small as possible. The 
standard measure of goodness-of-fit is the sum of squares of deviations, which is why this 
approach is often referred to simply as the OLS, ordinary least squares approach. Since the OLS 
approach does not work with the idea of individual inefficiencies, the usage of OLS in regulation 
is problematic. It can of course be used to identify likely cost drivers and to evaluate structural 
inefficiencies. Individual inefficiencies, however, are by assumption absent. In many cases, 
therefore, OLS estimates are only a starting point. It is followed by some ad hoc adjustment of 
the OLS estimate towards the frontier. Conceptually and theoretically, it would be better to do so 
as part of an integrated approach as the SFA approach. 

The deterministic frontier approach assumes that there is no noise, only inefficiency to explain 
deviations from the model costs C(y). The functional form is furthermore specified, e.g. to be 
linear. DEA has the same starting point in terms of noise, but works with a very large, in fact 
non-parametric, class of functions to begin with. In the case of the DEA variable returns to scale 
model, for example, the only a priori assumption is that C(y) is weakly increasing and convex. No 
more specific assumptions are made about the functional form. 

One can therefore say that deterministic parametric models have the disadvantages of DEA, no 
noise, without the advantages of DEA, namely a flexible functional form. We shall therefore not 
expand too much on these approaches.  

The third approach, stochastic frontier approach allows for both noise and inefficiency. The 
advantage of the approach is first of all that the idea is nice. Conceptually, it is attractive to allows 
for the realistic existence of both noise and inefficiency. The specification is also attractive by 
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allowing the use of classical statistical approaches like maximum likelihood estimation, likelihood 
ratio testing etc. 

The drawback of the approach is on the other hand that we need a priori to justify 1) the 
distribution of the inefficiency terms and 2) the functional form of the frontier. 

In the next section, we will expand on the SFA approach, and we will discuss how to cope with 
the drawbacks of having to specify a functional form and inefficiency distribution a priori. 

Before turning to the details, one general observation is worthwhile. It is often believed that 
acknowledging noise means that the evaluated units are put in a more favourable light. The 
double sided nature of noise, however, implies that a DSO may come worse out of the evaluation 
using a model with noise than they do in a model without noise. The data may suggest that the 
high performance is in part the result of good luck (cost decreasing noise for example) such that 
the real performance is actually worse. In game terms, the evaluated can claim bad luck in case of 
bad performance – but the regulator can claim good luck in case of good performance. This is 
especially relevant in the case of extreme units.  

2.2.4 Basic illustrations 
The ideas of these parametric approaches are illustrated in the figures below. 

In Figure 2.2, the classical statistical approach is illustrated. The cost function models the average 
or expected costs for different activity levels and any deviation is attributed to random errors or 
noise (i.e. all the DSOs are supposed to be equally efficient). The high costs of DSO 1 are 
therefore the result of bad luck, an idiosyncratic random extra cost of v1 while the low costs of 
DSO 2 is the result of good luck corresponding to a random saving of v2. Of course, if we 
believe in the conditions under which we estimate the cost function, we also have no basis for 
any regulatory interference since every deviation from the cost norm is considered to be beyond 
the control of the DSOs. 

In Figure 2.3, the deterministic approach, we take the opposite attitude and associate any 
deviations from the cost norm to inefficiency. Since inefficiency will always increase the costs, the 
cost function is now a classical frontier function, located below all observations in the cost 
function interpretation. Thus, the high costs of DSO 1 is believed to be the result of a high DSO 
specific inefficiency u1 while the relatively small marginal extra costs of DSO 2 indicates that the 
inefficiency of DSO 2, u2, is small. 
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Figure 2.2  Average cost (all noise) 
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Figure 2.3  Deterministic frontier (all inefficiency u) 

 

In Figure 2.4, the stochastic frontier approach is illustrated. The minimal cost of producing given 
output levels are again depicted by the cost function C(y,β), but now deviations from the minimal 
costs is generated by two factors, the noise represented by the symbol v and the inefficiency 
represented by the symbol u. We see that the excessive costs of DSO 1 are generated by both 
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positive noise (bad luck) and by inefficiency. The impressing performance of DSO 2 on the other 
hand is estimated to be the result of very good luck leading to a cost reduction of v2 combined 
with some inefficiency leading to a slight increase of u2 above the good luck outcome.  
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Figure 2.4  Stochastic frontier (both noise v and inefficiency u) 

 

The determination of the cost function or more precisely the cost function parameter β as well as 
the noise and inefficiencies, v’s and u’s, is in general done using so-called maximum likelihood 
estimation. This is the fundamental principle of statistical estimation and is based on the simply 
logic that we believe in the functions and noise and inefficiency values that make the 
observations we have as likely or probable as possible. That is, if we have two possible functions 
for example, and the observations we have often result from the former and only seldom from 
the latter, than we infer that that the first function is probably the correct one. Of course, we 
never know this with certainty since we can never observe the function nor the noise and 
inefficiency terms directly, but we have good reasons to believe in the ones with the highest 
likelihood of generating what we can actually observe, namely the actual outputs and costs levels. 

The likelihood principle is not only the basis of classical statistical theory. It is interesting that the 
same logic also applies in a contracting or regulation context. It can be shown quite generally that 
the optimal regulation should be based on maximum likelihood estimates, cf. Holmstrom (1979, 
1981) and with direct linkage to benchmarking, Bogetoft (1994, 1997). 

2.2.5 Conclusion 
In the choice of an efficiency evaluation model for regulation, there is a fundamental choice 
between the risk of misspecification of cost structure – how cost depends on a series of cost 
drivers – and the risk of noise in the data – how reported performance may deviate from actual 
performance.  
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The DEA approach is superior in terms of the specification problem while the SFA approach is 
superior in terms of the noise problem. Ideally, we would like to use flexible models that are 
robust to random noise. The problem however is that this is rarely possible in practice. The 
estimation task becomes bigger, the data need larger and still we cannot avoid a series of strong 
assumptions about the distributions of the noise terms. Hence, coping with uncertainty requires 
us to dispense somewhat with flexibility and vice versa. Approaches like SDEA that aim at 
combining flexibility with robustness to random noise are also still theoretically undeveloped and 
mainly of academic interest. Furthermore, SDEA or the stochastic extensions to DEA do not 
provide a complete alternative to DEA and hence do not provide an independent comparison 
point.  

Hence our conclusion is that the SFA approach is the obvious choice as a complementary model 
to the DEA model used on the Finnish regulatory context. In the following, we will expand on 
the SFA approach. We will describe it in more technical terms and we will outline the principal 
ways to cope with the limitations of the SFA approach, viz. how to choose a flexible functional 
form and how to choose a distribution for the inefficiency elements. We will also discuss the role 
of the SFA approach as a complement to the DEA model and how the dual usage of such 
models has been considered in Norway and Austria. 

2.3 Introduction to Stochastic Frontier Analysis 
The stochastic frontier approach was introduced independently by Aigner, Lovell and Smith 
(1977) and Meuser and Van den Broeck (1977). This chapter provides a short introduction to the 
basic characteristics of SFA. A comprehensive introduction to SFA can be found for example in 
Coelli et al. (1998).  

The key feature of SFA is that it allows for both noise and inefficiency. In a cost function 
interpretation, it would specify the costs as 

xi=C(yi)+ ui + vi 

where inefficiency ui is half-normal N+(0, σu
2) and noise term vi is normal N(0, σv

2).  

The advantage of the approach is first of all that the idea is nice. Conceptually, it is attractive to 
allow for the realistic existence of both noise and inefficiency. As indicated by the specification, 
the idea is that there is some underlying cost function that gives the minimal costs for different 
output levels under normal operations. In a DEA analogy, this corresponds to the DEA frontier. 
This costs level is rarely observed, however. Actual costs deviate from the true minimal costs for 
two reasons.  

One is noise or measurement errors. This terms picks up for example random variations in the 
number of breakdowns that require more or less maintenance, variations in salary levels, 
periodization choices, small registration mistakes etc. In short, it picks up all the small effects that 
are not modelled in full details. These effects can sometimes produce too small and sometimes to 
large costs levels. The noise term is therefore assumed to be symmetric around 0, i.e. we assume 
that it may just as well lower as increase the actual costs compared to a situation with normal 
conditions.  

The other term that makes actual costs deviate from minimal costs is inefficiency. This term is 
intended to pick up the coordination and motivation problems in different firms – and the fact 
that some firms are doing a better job solving these problems. A stylized interpretation of 
inefficiency is that it captures the “inability” or “laziness” of managers. It is more correct 
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however to interpret the inefficiency as the extra costs that are the results of the internal 
organization problems of coordinating activities and of motivating the employees. Part of this 
can also be a lack of bargaining power towards firms that the company in question outsource to. 
In case the companies are not operating in a homogeneous environment and the model does not 
include factors describing the differences in the conditions, inefficiency can partly be caused by 
the external conditions.  

The SFA specification is also attractive by allowing the use of classical statistical approaches like 
maximum likelihood estimation, likelihood ratio testing etc. In a SFA approach, we use the data 
to come up with a best estimate of the underlying costs function C. Compared to DEA, we have 
less freedom in our choices since we have to decide already at the outset about a possible classes 
of such functions. Given a best estimate of the cost function C, we can determine the noise plus 
inefficiency by comparing the actual cost and the cost function value. In SFA, we next investigate 
the distribution of these actual deviation u+v, and we come up with a best splitting of these 
terms into its parts, the inefficiency u and the noise v. This splitting is done using the classical 
statistical principle of maximum likelihood estimation once again. In practice, the cost function 
and the splitting are determined simultaneously using an iterative process. The ability to 
distinguish noise and inefficiency hinge on the assumption of one being symmetric and the other 
being asymmetrically distributed.  

In comparison to DEA, it is important to understand that DEA does not have any assumptions 
about the distribution of the inefficiencies across firms – and DEA does not believe that the data 
contains noise.  

There is one more difference between DEA and SFA in terms of inefficiency. A common DEA 
measure of cost efficiency is 

minimal cost / actual cost  

So efficiency is a relative term. An efficiency score of 0.5 shows that the company uses 100% 
above minimal costs.  

The u term in the SFA models is different since it is added. It gives the absolute amount of extra 
costs, say 1.7 million Euro. To make the results comparable with DEA, we shall usually present 
not the u terms, but the corresponding relative efficiencies. In principle, this is calculated as 

C(yi) / [C(yi)+ ui] 

This ratio is analogical to the above ratio for DEA and corresponds to Farrell efficiency score 
(Farrell distance). An alternative approach would be to use Shepard distance that is defined as 
actual cost / minimal cost and hence scores above one refer to inefficiency.  

The drawback of the approach is on the other hand that we need a priori to justify 1) the 
distribution of the inefficiency terms and 2) the functional form of the frontier. We will now 
discuss how to cope with these difficulties. 

Different inefficiency distributions 

SFA requires some a priori assumption about the distribution of the inefficiency term in order to 
separate noise and uncertainty. On the other hand, it is hard to give strong arguments for a 
specific form like the half normal. It is therefore better to start with a more general and more 
flexible specification and to let the data reveal as closely as possible the correct distribution. 
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A good alternative to the original specification above (ui is half-normal, i.e. N+(0, σu
2)) is to 

assume a truncated normal distribution. That is, one can assume that ui is N+(µ, σu
2), i.e. a normal 

distribution centered around µ and next truncated to be above zero. In case µ is equal to zero 
these assumptions coincide. However, using data to estimate just one more parameter, the µ 
value, allows for quite a flexible starting point. This is illustrated in figure 2.5 below. When µ (mu 
in the figure) is negative, the underlying normal distribution is centred to the left of the y-axis and 
the truncated positive parts are therefore monotonously decreasing as we see for the boldest 
illustrations below. This means that most of the units would have high efficiency score while only 
a small part of the group clearly differ from the main group and are very inefficient. Using a 
positive µ instead we get inefficiency distributions more like a traditional normal distribution 
except that the left tails are truncated as for example the dotted distribution illustrates. This 
means that efficiency score are more evenly distributed along the whole range.  
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Figure 2.5  Alternative inefficiency distributions (Bogetoft and Otto, 2005) (mu referes to µ) 

 

The truncated normal distribution is not only relevant because it is a flexible starting point. It is 
also convenient when there is data from several periods or one wants to account for factors that 
the DSOs cannot affect but which may affect DSO performance.  

Battese and Coelli (1992) proposed a specification of the inefficiency distributions that allows for 
changes over time in a panel (i.e. a dataset consisting of several time periods). This means that 
separate µ value is estimated for each period.  

Another variant of the inefficiency distribution is to assume that it depends on a vector of firm-
specific variables, including environmental variable. This offers an alternative to the most 
obvious way of including the environmental variables in the model as output factors. Such 
suggestions have been developed by Kumbhakar, Ghosh and McGukin (1991) and Reifschneider 
and Stevenson (1991) among others. A particular simple form is given in Battese and Coelli 
(1995). They assume that uit is N+(zitδ,σu

2), where zit is a p×1 vector of variables which may 
influence the efficiency of DSO i and δ is an 1×p vector of general impact parameters to be 
estimated. This is a particularly attractive specification since it allows the second stage analysis of 
explaining variations in efficiency to be integrated in the first stage of estimating the efficiencies. 
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That is, the somewhat ad hoc nature of the so-called second stage analysis in DEA studies is 
eliminated by this specification.  

Functional forms of a cost function 

The second fundamental problem in a parametric frontier approach is to select a functional form 
for the frontier. The selection of functional form is guided by intuition and data as well as theory. 
An experienced statistician is usually good at choosing functional forms with possibly data 
transformations and the sufficient degrees of freedom to provide a reasonable goodness of fit of 
the data at hand. In addition, theory guides the selection by imposing reasonable properties on 
the estimated function, e.g. that costs function is homogenous in prices or that output sets are 
convex. 

A good general principle is to use the simplest possible representation with the sufficient 
flexibility to represent data. The simplest possible form is the linear one and a good starting point 
– and even a starting point used in the iterative procedures used to estimate more advanced 
forms – is therefore recommended to do a linear regression of cost on the different outputs. 

A slightly more complicated specification is the log-linear one being linear in the log of the 
variables, corresponding to a multiplicative relationship in the original variables, well-known from 
Cobb-Douglas type functions. 

Linear specifications correspond to first order approximations and the natural next step towards 
a workable form is to use quadratic approximations, possibly in the log of the variables. A second 
order approximation using log variables gives the so-called translog form. In a cost function 
specification with p outputs and no prices, it pictures the relationship as 
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where Ci is the total cost of the i-th unit, yij is the j-th output quantity of the i-th unit, and the b’s 
are unknown parameters to be estimated. 

This form is a so-called flexible form. This means intuitively that we do not impose any 
unnecessary restrictions on the functional form (and more precisely on the behaviour (elasticities) 
that results from the function is free to begin with). The drawback of this flexibility is on the 
other hand that the results may be harder to interpret, that more parameters must be estimated 
and that the resulting estimated model may suffer from curvature violations such that the output 
sets for example do not have the properties of normal output sets. 

The data needed to estimate a translog function is defined in part by its number of free 
parameters (degrees of freedom) which is 3+p+p(p+1)/2 if we work with a truncated normal 
distribution of inefficiencies. The 3 variables are the unknown parameters of the inefficiency and 
noise distributions while p+p(p+1)/2 is the number of parameters b related to the p independent 
variables y (we have symmetry bjk=bkj). 
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Software 

In practice calculating SFA results requires the use of a software package that is not included in 
the standard programs installed in most personal computers. There several software packages 
that have dedicated procedures for SFA and COLS models. These include LIMDEP7 and 
Frontier8. These dedicated software provide the easiest access to SFA. In addition, it is of course 
possible to develop the parameter and efficiency estimates using general purpose statistical 
software like R, S, SAS or GAMS. Since the typical estimation is based on the maximum 
likelihood approach the user basically needs a good non-linear optimization routine.  

2.4 Use of SFA as analogous model 
In this chapter, we briefly comment on the use of SFA as a complementary model to DEA. The 
section is based on the experiences the Norwegian and Austrian regulators have on SFA. 
However we start with more general discussion on the role of SFA in regulation. 

2.4.1 The role of SFA  
In practice there are a number of question related to the actual use of SFA in regulations. The 
choices related to the use are discussed shortly before discussing the actual experiences in the 
next subsections.  

How to use multiple models effectively in regulation? DEA and SFA are complementary in the sense that 
DEA provides a stable and powerful data driven mechanism for regulation of verifiable outputs 
and inputs, whereas SFA provides a safeguard to data errors and stochastic influences in the cost 
and output data. As hinted at already in Agrell and Bogetoft (2003d), multiple models are useful 
only to the extent that they have a distinct application area in the overall regulatory approach. 
Possible uses are e.g. to provide a secondary tool to (i) provide a well-founded base for solving 
the super efficiency problem (in possible future DEA yardsticks) and (ii) a filter to detect, 
estimate and reimburse potential outliers. The selected use should be in line with the selected 
regulation system.  

How to address conflicting results (order, scale)? The average SFA scores will often be higher than the 
average DEA scores at equivalent returns to scale, since an extra error term absorbs part of the 
detected distance from the frontier. This additional error may more than compensate for the 
added restriction on the cost structure – especially when the underlying structure is not too 
complex. It follows that SFA may be an overly generous/conservative regulation instrument if 
the inputs and outputs actually are deterministic and verifiable. When moving from a 
process/input-oriented regulation, which inherently may suffer from information asymmetries 
and data errors, to an output-oriented regulation with higher aggregation on the input side, the 
stochastic element may be less important than the loss of flexibility. This suggests that it is 
advisable to choose one approach as the primary one based on the characteristics of the 
regulation system.   

Handling hyper-efficient firms. A problem in DEA based yardstick is that typically some firms have 
no comparators and are automatically classified as efficient. These firms are called hyper-efficient. 
By supplementing the variable returns to scale (VRS) DEA models with more general return to 
                                                 

7 For more information, see http://www.limdep.com/ 
8 Frontier software is available free of charge. For more information, see 
http://www.uq.edu.au/economics/cepa/frontier.htm 
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scale conditions (e.g. non-decreasing returns to scale (NDRS) or constant returns to scale (CRS)) 
or by including weight restrictions, some of this problem can be eliminated. For the remaining 
units, the regulator may have to turn to individual handling of their performances. SFA may be 
informative to set cautious norms in such settings. The implementation of such a secondary 
option can be either formalized – or it can be guided by regulatory discretion, negotiation or a 
principle of accountability. 

Information dissemination principles? Dynamic regulation transitions require a crystal clear 
communication on the objectives, instruments and incentives the regulator intends to use for the 
upcoming periods. Given the methodological and conceptual difficulties involved in merely 
explaining the differences between to two models, it is often advisable to use one of the models 
only as an internal, yet permanent, component of the regulatory process.  

Bias correction. The DEA cost structures are in general biased towards higher costs – and more so 
the smaller the data sets. This holds also for local areas less dense in observations. One way to 
cope with this – and avoid unequal treatment of units – is to impose some general regularity on 
the structure, viz. via parametric models like SFA, via weight restrictions or via enhanced 
possibilities to rescale. Alternatively, one can correct for bias through boot-strapping or – as a 
simple approximation – by using inverse shell analyses. Another approach is of course to rely on 
increased international cooperation – an approach that have some potential merits in a Nordic 
setting where the comparability is – after all – quite high, and where collaboration has previously 
been established, cf. also Edvardsen and Førsund (2003). On the other hand, the difficulties of 
creating comparable data across countries should never be under-estimated making the other 
alternatives, including the usage of SFA worthwhile to consider as well. 

2.4.2 The NVE benchmarking models 
Ever since the 1991 Energy Act, NVE initiated limited benchmarking exercises using key 
performance ratios to monitor and motivate efficiency improvements in the incumbent cost-plus 
regime. The culmination of this predecessor to the DEA regulation model was probably the 
NVE (23/1997) benchmarking software tool that was publicly distributed. However, not before 
the efficiency requirement was individualized did NVE synthesize the benchmarking model.  

The Data Envelopment Analysis (DEA) benchmarking model of NVE has been documented in 
Kittelsen (1993, 1994, 1996), Kittelsen and Torgersen (1993) and NVE (1994, 1995, 1996). The 
model was later adjusted by including quality indicators using the so-called KILE system. Two 
revised models for distribution and regional transmission were presented in NVE (2001). The 
distribution model includes the a priori estimated cost of non-delivered energy, KILE, to account 
for quality differences among firms. The actual cost of non-delivered energy is added to the 
operating cost, whereas the anticipated cost is added to the exogenous variables as an indicator of 
operating quality. 

In the development of new regulation from 2007, NVE also undertook experiments with 
alternative estimations of a (new) DEA model, cf. Agrell and Bogetoft(2004). The model is a total 
cost model with cost drivers related to energy transport (energy delivered), customer 
administration (number of clients), capacity provision (line length LV and HV) and some proxy 
for environmental complexity (expected KILE). 

In particular, two SFA models based on the translog specification but using different notions of 
capital costs (based on book and new values, respectively) were tests. With new values, the SFA 
estimation gave very reasonable results while the use of capital costs based on book value lead to 
an ill-specified model with wrong signs on several of the costs drivers. 
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The correlation with the DEA results were not too impressing suggesting that the SFA model 
were either too restrictive in its specification of the relation between outputs and costs or that 
more flexible DEA were basically picking up random variations in data as inefficiency 
differences. 

At NVE, the SFA have been used as part of the model validation process but its role in the 
future regulation and in particular its role in relation to the dominating primary model, the DEA 
model is as of now undecided. Some important issues however were identified in Agrell and 
Bogetoft (2004). The inevitable principal issue is how to combine (potentially conflicting) 
methods in a coherent regulation approach. In particular, we address the questions of (i) 
utilization, (ii) conflicting results and (iii) information dissemination.  

In the NVE case, where frontier analysis is well established as regulatory instrument, SFA can be 
seen as a secondary tool to (i) provide a well-founded base for solving the super efficiency 
problem (in possible future DEA yardsticks) and (ii) a filter to detect, estimate and reimburse 
potential outliers. Both objectives contribute to the credibility and stability of the norm value, 
consistent with the overall strategy towards more performance based regulation outlined in Agrell 
and Bogetoft (2003a).  

To avoid problematic interpretation of potentially conflicting results, Agrell and Bogetoft(2004) 
argued in favor of keeping DEA as the primary estimator of operator inefficiency. The results 
from SFA would intervene in the internal review of DEA scores to resolve outlier problems 
without resorting to pure regulatory discretion or low powered regimes. In this utilization, the 
relative ranking of firms in SFA has no bearing on the regulation, only the absolute scores. 

What comes to the information dissemination it was concluded the in the Norwegian context it is 
advisable to use the SFA only as an internal, yet permanent, component of the regulatory 
process. Dynamic regulation transitions require a clear communication on the objectives, 
instruments and incentives the regulator intends to use for the upcoming periods. Given the 
methodological and conceptual difficulties involved in explaining the differences between DEA 
and SFA, it was decided that only on should be used in information dissemination.   

In the Norwegian context, Agrell and Bogetoft(2004) analyzed a series of models, both 
parametric SFA models and non-parametric DEA models for NVE. The latter have been 
analyzed using traditional techniques ignoring bias and uncertainty and they have been analyzed 
using state of the art bootstrapping to get insight in the bias and uncertainties involved. In the 
CRS cost efficiency model based on 1996-1999 data, NV and global prices, the results of the 
three principal approaches are illustrated in Figure 2.6 below. 
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Figure 2.6  Comparison of efficiency scores based on SFA (Eff(SFA, TL, N+)), variable 
returns to scale DEA (Eff(NV, G, VRS)), and bias corrected variable returns to scale DEA 

CorrEff(RV, G, VRS)) 

 

This comparison is interesting. It shows how the bias corrected efficiencies are (with very few 
exceptions) uniformly the toughest. The uncorrected are more favourable to the distribution 
companies, and the SFA estimates are the most favourable except for a few units, mainly those 
on the efficient frontier in the traditional DEA model. In a yardstick regulation, this suggests that 
it is fair and safe to use a SFA norm to handle the hyper-efficient units. 

Also, we see that the raw DEA estimates in many cases give a reasonable compromise between 
the most demanding norm, the bias corrected norm, where uncertainty in the data is ignored but 
the bias in the DEA model is coped with, and the SFA model, where uncertainty is not ignored 
and where in fact large parts of the performance variation is attributed to unexplained uncertainty 
in the data. This gives – at least in the present application - some support to the use of the raw 
DEA measures in those cases. 

2.4.3 Austria - the E-Control benchmarking models 
In their attempt to introduce incentive regulation, Austrian E-Control formed in 2001, tried 
different models, both DEA models and COLS models. The exact role of the different models 
cannot be extracted from the available documents although there seem to have been a 
compromise where the final efficiency scores are weighted averages of the score from two DEA 
models and one COLS model. 

The three models are closely related. The most detailed DEA model contain 5 cost drivers while 
the other DEA model and the COLS model contain 3 cost drivers formed by aggregating 3 of 
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the drivers in the most detailed specification. The DEA model and the COLS model with the 
same specification give roughly similar average efficiency levels. This suggests that the underlying 
DEA model is almost linear. (A similar result was obtained in the NVE analysis in Agrell and 
Bogetoft (2004)). 

Informal contacts with E-control suggest that they have also tested SFA models with translog 
functional form. However there is no public information on these results or the use of the 
results. The informal information also suggests that the parametric models were not used to 
select variables as such but rather to serve as a control method for the DEA runs much like it is 
planned in Finland. 

The Austrian results, however, were not considered sufficiently reasonable and the results were 
therefore not shown to the industry nor used in the regulation.  
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3 Building the analogous model 

3.1 Process and methods  
The aim of the previous sections has been to provide a basis for the development of the 
analogous model. We have described the Finnish regulatory context, alternative efficiency 
analysis approaches, and discussed shortly the potential ways of using the alternative model in 
regulation.  

As discussed above, it is most natural to use SFA as a basis for developing the analogous 
efficiency evaluation model. SFA complements DEA specifically in those areas where DEA has 
its weaknesses. Both SFA and DEA are also theoretically and practically well established. Hence 
SFA will be used as the primary method in the study. In the next chapters, the alternative 
efficiency model based on SFA will be discussed in detail.  

The choice of a benchmarking model in a regulatory context is a multiple criteria problem. In our 
investigation of alternative models specifications, c.f. below, we have stressed the following four 
groups of criteria.  

1. Conceptual 

It is important that the model makes conceptual sense both from a theoretical and a practical 
point of view. The interpretation shall be easy and the properties of the model shall be 
natural. This contributes to the acceptance of the model in the industry and provides a 
safeguard against spurious models developed by data mining and without much 
understanding of the industry. To be more precise, this has to do with the choice of outputs 
that shall be natural cost drivers and with functional forms for example that have the right 
return to scale and curvature properties – e.g. that it is more expensive to produce more than 
less. 

2. Statistical 

It is of course also important to disciple the search of a good model with classical statistical 
tests. We seek models that have significant parameters of the right signs and that do not leave 
a large unexplained variation. 

3. Intuitive and experience 

Intuition and experience is a less stringent but nevertheless very important safeguard against 
false model specifications and the over- or under use of data to draw false conclusions. It is 
attractive that the models produce results that are not that different from the results one have 
found in other countries or related industries. Of course, in the usage of such criteria, one 
always the runs the risk of mistakes – we may screen away extraordinary but true results 
(Type 1 error) and we may go for a more common set of results based on false models (Type 
2 error). The criteria shall therefore be used with caution.  

One aspect of this that one will tend to be more confident in a specification of inputs and 
outputs that leads to comparable results in alternative estimation approaches, e.g. in the DEA 
and SFA model. The experiential basis of this is that when we have a bad model, SFA will see 
a lot of noise and therefore attribute the deviations from the frontier to noise rather than 
inefficiency. Efficiencies will therefore be high. DEA on the other hand does not distinguish 
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noise and inefficiency so in a DEA estimation, the companies will look very inefficient. 
Therefore, too deviating results in the DEA and SFA estimations may be a sign that the 
model is not well-specified. However, it should be emphasized that the aim is not to generate 
the same results using a DEA and an SFA estimation. The aim is to find the right model. 
However, high correlation between the DEA and SFA results is an indication that the model 
specification is reasonable. It therefore also becomes an indirect success criterion. 

4. Regulatory and pragmatic  

The regulatory and pragmatic criteria perspective again call for conceptually sound, generally 
acceptable models as discussed above. Also, the model shall ideally be stable in the sense that 
it does not generate too fluctuation parameters or efficiency evaluations from one year to the 
next. Otherwise, the regulator will loose credibility and the companies will regard the 
benchmarking exercise with scepticism. Of course, one shall not choose a model simply to 
make the regulator’s life easy, so it is important to remember that similar results is also a sign 
of a good model specification, cf. the intuitive criteria above. The regulatory perspective also 
comes into the application of the model. If the model is not good, a high powered incentive 
scheme for example would not be attractive since it would allocate too much risk on the 
firms. 

The analysis process was based on the idea of estimating a number of SFA models based on 
different models structures, i.e. functional forms and input-output combinations. These models 
were analysed based on the above criteria. In the following sections, we briefly discuss the data 
and the series of estimations and comparisons we made to reach our recommended model. 
Properties of the recommended model, including the stability of the specification and the 
regulatory usage of it in combination with DEA, are then further discussed in section 4. 

3.2 Model structure 
The general framework used in all SFA estimations is that of a cost function 

xi=C(yi)+ ui + vi , i=1,…,N 

where xi is actual costs of DSO number i, C(yi) is the minimal costs of producing the output yi of 
DSO number i under normal circumstances. Furthermore, ui is the individual (additive) 
inefficiency term for DSO number i and vi is the noise (unexplained variation) in the data for 
DSO number i. 

We have chosen to work with normal distributed noise as it is usually done in econometrics, i.e. 
we assume that the vi are independent, identically distributed normal N(0, σv

2). 

The a priori assumption about the inefficiency distribution in the population is that it is a 
truncated half normal distribution, i.e. the ui are independent half-normal N+(µ, σu

2). It is 
important to understand that this is a very flexible starting point. The distribution of inefficiency 
is difficult to know a priori and the best approach is therefore to choose a flexible family. As 
illustrated in Figure 2.5, the truncated normal serves this purpose well. 

The estimation of these models using maximum likelihood estimation is usually done in an 
alternative representation of the parameters, namely in terms of 

σ2 = σv
2 + σu

2 
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γ = σu
2/ σ2 

Observe that sigma squared, σ2 = σv
2 + σu

2, is an indication of the total variation around the 
function C, while γ is a measure of the relative importance of the inefficiency. The latter, γ, is 
between 0 and 1 with 0 corresponding to the case of no inefficiency and 1 corresponding to the 
case with no noise. 

To determine the usual relative efficiency measures E, i.e. the measures that are comparable to 
the measures usually reported in the DEA study, we must – once the model have been estimated 
– calculate 

C(yi) / [C(yi)+E(ui |ui+ vi)]  

i.e. we substitute the non-observable inefficiency ui by its conditional mean given the observed 
combined error and inefficiency term.  

If the estimations are based on a log transformed numbers, like in the loglinear and the translog 
models, the efficiencies are determined in a slightly different way, namely as 

1 / E(exp(ui)|ui+vi)  

since in this case, the inefficiency terms ui are actually used in a multiplicative way, which after the 
log transformation becomes an additive term, and is assumed to follow a truncated normal 
distribution. 

3.2.1 Functional forms 
In the analyses we have worked with alternative specifications of the functional form. In the 
following we will explain these using a framework with just two outputs to simplify the formula 
and to avoid working with vector notation. 

The simplest alternative is the linear specification 

xi = b0 + b1y1i + b2y2i 

like in a classical multiple linear regression approach. 

If the deviations from the cost function (i.e. noise + inefficiency) are dependent on the size of 
the company it is said that there is heteroscedasticity in the data. A standard approach for dealing 
with this in regression analysis is to estimate a normed linear model 

xi/y1i= b0/y1i + b1y1i/y1i + b2y2i/y1i   

The purpose of this normalization is to allow the variance of the inefficiency and noise terms to 
increase with yi1. There are good reasons to expect heteroscedasticity in the linear model. 
Specifically, the extra cost caused by inefficient management will most likely increase in absolute 
terms as the company becomes larger. Excessive costs of 1 mio Euro in a small company may 
correspond to excessive costs of 5 mio Euro in a larger company, for example. By estimating the 
normed model, we basically adopt the idea of having similar relative cost overruns. That is we 
assume that a 20% cost overrun is as likely in a small company as in a large company, not that a 1 
mio Euro cost overrun is equally likely. 
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Another way to cope with the problem of heteroscedasticity, ie. to work with similar relative 
inefficiencies (and noise) as opposed to similar absolute inefficiencies (and noise), is to work with 
a  log-linear (Cobb-Douglas like) specification 

lnxi = b0 + b1lny1i + b2lny2i 

Lastly, as a slightly more detailed approximation, we have worked with translog forms 

lnxi = b0 + b1lny1i + b2lny2i + 0.5b11(lny1i)2 + 0.5b22(lny2i)2 + b12lny1ilny2i 

as explained in Chapter 2. 

3.2.2 Variable choice 
It is not a primary aim of this sub-project to actually determine the best specification since the 
idea is to make a model that can supplement the DEA analysis. Still, given the available data we 
have experimented with a series of possible specifications. The guiding principle in this 
connection has been the general criteria discussed above. Particular focus has been on 
specifications has been on specifications that are conceptually sound. 

The classification of variables and parameters for the models is illustrated in Figure 3.1 below. 
With input X or controllable resources we primarily mean the costs that can be controlled within 
the time horizon of the model.  The class of outputs Y is made of exogenous indicators for the 
results of the regulated task, such as typically variables related to the transportation work (energy 
delivered etc), capacity provision (peakload, coverage in area etc) and service provision (number 
of connections, customers etc). The class of structural variables Z contains parameters that may 
have a non-controllable influence on operating or capital costs without being differentiated as a 
client output. In this class we could find indicators of geography (topology, obstacles), climate 
(temperature, humidity, salinity), soil (type, slope, zoning) and density (sprawl, imposed feed-in 
locations). In short, we seek to capture the relevant and in particular the controllable costs on the 
input side, and the relevant services provided or cost drivers on the output side.  

DSODSOX InputsX Inputs Y OutputsY Outputs

Z EnvironmentZ Environment

Controllable resources Exogenous demand (task)

Complicating factors

Direct costs Transport work
Capacity provision
Service provision

Proxies for
- Geography, climate, soil type, 
-Complexity, density
- …

 
Figure 3.1  Variable classification 
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The choice of variables is based on the data collected by EMV. During recent years EMV has 
commissioned a number of studies related to factors that can be included in the efficiency 
evaluation models. The starting point in this development has been the seminal study by 
Korhonen et al. (2000). This study presents a thorough analysis of the outputs and complicated 
factors. At this stage the most relevant development issues are related to the ways of taking 
quality and capital costs into account. In this area new data has been collected and the aim of the 
model development in Study A is to expand the current DEA model to better take into account 
quality and capital costs. The following subsections introduce the data specifications. 

3.2.3 Input specifications 
On the input side, we have experimented with different specifications. These specifications are 
combinations of the following three cost components.  

Operational expenditure (opex) includes all the cost components that are considered to be 
controllable. This definition coincides with the data used in the current DEA model. The 
indicator includes for example personnel cost, external services, material and cost of energy used 
for transmission losses. Payments to transmission system operator are excluded.  

Depreciation is defined on the basis of the net present value of the distribution network. As in 
the current regulatory system, the net present value is calculated for all the companies using the 
same principles; standard component prices and a range of holding times. The yearly depreciation 
is defined using a straight-line depreciation. At the moment this data has been classified as 
confidential.  

Interruption costs are calculated from the indicator “average interruption time per customer” by 
multiplying it with the number of customers and the average cost of energy not supplied. The 
same average price is used for all the companies and if reflects the average customer profile of 
the Finnish distribution companies. In the future more detailed data on the interruptions will be 
available and hence the interruption costs can be calculated more precisely. For more discussion 
on the interruption costs and cost of energy not supplied, see the report of study A. 

The starting point of the study is to take into account all the three cost components. This would 
reflect the aim of minimising the societal costs of electricity distribution. However to test 
different specifications we have tested four possible, more or less inclusive cost concepts.  

X1: Opex + Depreciation + Interruption costs 

X2:  Opex + Depreciation  

X3: Opex + Interruption costs 

X4: Opex  

3.2.4 Output specification  
On the output side the study relies very much on earlier studies, especially Korhonen et al. 
(2000). The output set introduced in that study has been used in the current DEA model used by 
EMV. At the moment EMV considers that the previous studies justify the output set used and it 
does not see urgent development needs related to the outputs. Hence the possible extensions to 
the output data set are fairly limited.    
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In this study we have considered four possible output factors. The three first are based on the 
current DEA model and one additional factor is considered. The outputs are defined as follows.  

Value of energy is based on the amount of energy delivered to consumption (MWh) on three 
different voltage levels. For each voltage level the amount of energy is multiplied by the national 
average distribution price (€/MWh) on that voltage level. In this way different voltage levels can 
be aggregated by taking into account the added value of transforming the electricity to lower 
voltage levels. 

Number of customers refers to the number of connection points or users in the network. 
Numbers of customers on each voltage level are summed.   

Total length of networks reflects the geographical distance of the customers from the source of 
energy. This is calculated by summing up the length of network on different voltage levels.  

On the output side, we have experimented with different combinations of of the following 
variables 

Y1: Value of energy 

Y2: Total network length 

Y3: No of customers 

Y4: Replacement value 

In the future it is possible that the output side could be further expanded. One possible direction 
could e.g. be to split the length of network into cables and overhead lines. 

3.2.5 Environmental proxies 
The basic principle in this study is that the output factors included in the model (presented 
above) describe the operational environment of the companies. This is justified by the analyses 
presented by Korhonen et al. (2000). However, it is interesting to do a comparative analysis and 
to see if this is valid also in the SFA context.  

The impact of the environment has been dealt with via second stage analysis in this study. This 
means that we have estimated the models possibly without a full account for the conditions in 
terms of density etc under which the DSOs work. Next we have examined if the estimated 
variation in efficiency can be explained by some environmental proxies. 

It should be noted that even though the estimation does not start with all possible environmental 
proxies, the output structure, i.e. the Y variables included, will typically pick up at least some of 
the impact of the environment. When both network length and customers are part of the 
outputs, for example, we also have an indirect measure of the density of the network. 

Still, to control further for the impact of the environment, we have in the second stage analysis 
examined the explanatory power of variables like: 

• Percentage of underground cables (to proxy for separate urban, semi-urban and rural 
companies). 

• Interruption time (to proxy for difficulty) 
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The indicators used as environmental proxies were defined in the following way. Percentage of 
underground cables is calculated at the mid voltage level 6-70 kV (usually 20 kV). The length of 
underground cables is divided by the total length of network. This gives a proxy that can be used 
for separating urban, semi-urban and rural areas. Furthermore the total length of interruptions 
defined as the duration of interruptions at the substation level multiplied by the average number 
of customers per substation.  

The results of the second stage analysis are presented in section 4.2. 

3.3 Description of the data 
In the development of the parametric model we have strived to make sure that all DSOs could be 
included in the analysis. The quality of the data seemed sufficiently high to accomplish this 
although we do realize that some of our evaluations, including some of the correlations and even 
ranking of models could be altered by more dramatic elimination of potential outliers.  

In the analysis 2004 data is used as the primary data set. Unless otherwise noted we refer to this 
dataset. In the analysis of the stability of the results year 2003 data is used as a comparison point. 
However this dataset is more limited and on the input side this data includes only operational 
costs. Hence the comprehensive analysis of model structures etc. is based on 2004 data only.  

In this section we present graphical data analysis that will support the statistical analysis used for 
selecting the SFA model. We first analysed the connection between total input (X1) and the 
output factors. This reveals the size differences of the companies play a very essential role in the 
dataset. Furthermore the data seem to include clear heteroscedasticity, i.e. the deviations from the 
assumed cost function (which correspond to inefficiency + noise in SFA) are dependent on the 
scale of output. This is illustrated in Figure 3.2, where heteroscedasticity causes the dataset to be 
showed in a conical form starting from the origin.  
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Figure 3.2  Input versus Value of energy (Energy delivered) 
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Large size differences and heteroscedasticity suggest that it is better to analyse the data 
graphically on logarithmic scale. When both axes are transformed to logarithmic scale, straight 
lines that go trough the origin in the original scales are presented as straight lines in the new 
coordinates. This implies that data with increasing deviations from the assumed cost function (i.e. 
conical shape) would seem to be bound by two parallel lines and the deviations would seem to be 
equally large on the figure. Figures 3.3 - 3.5 present the input X1 compared to the three output 
indicators. These figures suggest a close to linear dependence between the input and the output 
factors.  
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Figure 3.3  Input versus Values of energy (Energy delivered) on logarithmic scale 
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Figure 3.4  Input versus Network length on logarithmic scale 
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Figure 3.5  Input versus Number of users on logarithmic scale 
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As heteroscedasticity is often taken into account by assuming that the error term is dependent of 
one of the independent factors (in this case outputs) we analysed also the dependence of input 
and output factors in the case where output and input factors were divided by one of the outputs. 
Figure 3.6 illustrates the impact of this transformation. The figure suggests that heteroscedasticity 
is removed by this transformation.  
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Figure 3.6  Input v.s. network length when scaled by the value of energy  

 

We have now looked at the link between input and the outputs. In addition to this, it is motivated 
to take a look at the input components. This shows that the cost components are well linked to 
each other and there are no outliers in the dataset. As an example, Figure 3.7 presents operational 
expenditure in relation to the full dimensional input (X1). 
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Figure 3.7 Full input versus Opex 

 

The above figures show that the dataset does not include any clear outliers and that there are 
clear dependencies between the inputs and the outputs. This provides a good starting point for 
the statistical analysis. 

3.4 Selection of the model structure 
We have tested a series of models structures to justify the selection of input, output and 
environmental factors and the selection of production technology. In practice these have been 
analysed simultaneously and iteratively. However, here the results are presented so that we 
discuss the questions related to input-output combination and functional form separately. This 
should make the report easier to read.  
 
Concerning the selection of input-output combination the main purpose has been to justify the 
use of input-output combination independently from DEA. However, it has to be kept in mind 
that the dataset that is used as a starting point reflects the choices made based on the DEA 
analyses. This reflects the fact that full scale analysis of all the potential input and output factors 
has not been the goal of this study.  
 
To justify the selection of input-output combinations 16 models structures have been 
investigated. These combine the above-mentioned 4 input possibilities (X1, X2, X3 and X4) with 
4 output possibilities (Y1, Y2, Y3), (Y2, Y3), (Y1, Y3), and (Y1, Y4).  

To make a justified selection of the functional form, a series of parametric SFA models have 
been developed and analysed. These functional forms have been separately estimated for each of 
the 16 input-output combinations. The analysed functional forms (that have been explained 
above) are the following. 
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• Linear 
• Loglinear 
• Translog 
• Normed linear (linear with heteroscedasticity) 

For the normed linear model we have analysed the use of three different output factors for 
norming. In the base runs, Y1 (value of energy) was used as the norming variable. After having 
determined the most promising specifications, a series of eight supplementary runs we 
experimented. These tested the use of alternative outputs, Y2 and Y3, as the norming variables. 

We have for each model structure compared with a series of non-parametric DEA models. In 
this report we compare the results to the six most important ones. These DEA models are the 
following. The abbreviations used in the later text are presented in brackets. 

• Variable returns to scale (d_dea_far_vrs) 
• Decreasing returns to scale (d_dea_far_drs) 
• Non-decreasing returns to scale (d_dea_far_ndrs) 
• Constant returns to scale (d_dea_far_crs) 
• Bias corrected non-decreasing returns to scale (d_dea_far_ndrs_biascorr) 
• Bias corrected constant returns to scale (d_dea_far_crs_biascorr) 

In the abbreviations “d“ indicates that we are calculating distances (efficiency scores) and “far” is 
an indication that the measures are Farrell (as opposed to Shepard) measures. The first four 
models are the normal DEA models that only vary by the assumed return to scale. VRS is 
variable return to scale, DRS is decreasing return to scale (possibly disadvantages of being large), 
NDRS is non-decreasing return to scale (possible disadvantages of being small) and CRS is the 
original constant return to scale model. The bias corrected NDRS and CRS models, 
ndrs_biascorr and crs_biascorr, are the same models as the VRS and CRS models above, except 
that we now correct for the bias in the estimates using bootstrapping. In the validation phase of 
the project, cf. Section 4.3, we have also compared the confidence intervals of the bias corrected 
efficiencies with the SFA models. 

The results of the 24 (16+8) test runs have been analysed both from the statistical and practical 
point of view. The full details are too extensive to be reported here. Detailed results have been 
made available to EMV in Excel files that accompany the final report. 

3.4.1 Conclusions on input-output combinations 
The analysis of possible input-output combinations was based the analysis of the 24 alternative 
variable combination. All the functional forms were taken into account in the analysis and in 
practice the analysis work related to input-output combinations and functional forms proceeded 
simultaneously. We first discuss the input-combinations. Based on the careful examination of the 
results, the following conclusions can be presented.  

On the input side the full dimensional cost X1 (Opex + Depreciation + Interruption cost) works 
well. The use of alternative definitions would not add any value from a practical or statistical 
point of view. Hence we suggest the use of full dimensional cost X1 as an input. According to 
the preliminary results from Study A this input seems attractive in the DEA context as well. 

On the output side the specification (Y1, Y2, Y3) used in the current DEA model is the most 
attractive. Dropping any variable would reduce the explanatory power of the models. On the 
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other hand the use of replacement value (Y4) instead of network length does not improve the 
results. Hence the results support the analysis behind the current DEA model.    

3.4.2 Summary of results concerning the functional form 
The following paragraphs, figures and tables aim at summarising the key results for the 
recommended input-output combination (X1 (opex + depreciation + interruption cost); Y1 
(Value of energy), Y2 (Network length), Y3 (No. of customers)). This section presents the results 
and the conclusions are presented in the next subsection. 

We first present the summary of the average efficiencies in Table 3.1. This shows that the 
efficiency levels are mostly between 0.8 and 0.9. Only SFA linear and SFA translog deviate from 
this.  

Table 3.1 Summary of the average efficiencies of compared models 

MODEL Average Efficiency 
SFA Linear 0.72 
SFA Loglinear 0.88 
SFA Translog 0.98 
SFA Normed linear 0.89 
DEA VRS 0.89 
DEA CRS 0.83 
DEA DRS 0.85 
DEA NDRS 0.86 
DEA CRS Biascorrected  0.80 
DEA NDRS Biascorrected 0.82 
 

We also present the estimation results for the four alternative functional forms. These are 
summarised in Tables 3.2 - 3.5. In these tables we give both the parameter values of the estimated 
functional form and the details of the estimated noise and inefficiency distributions. Recall that 
sigma-squared is a measure of the total variation around the best function form in the given class 
(linear, log linear etc), Gamma is a measure of the fraction of variation which is due to 
inefficiency and Mu given the mean value of the normal distribution that underlies the truncated 
normal distributed inefficiency distribution.  

The results show there are clear problems related to the significance of the parameters in the 
translog model. All the co-efficients are statistically insignificant. The model also interprets 
almost all the variation as noise as can be seen from the low value of Gamma. The variation 
(sigma-squared) is the lowest of all the models. For the other specifications the individual results 
do not reveal anything alarming. Comparison of the results shows that in the normed linear 
model the share of inefficiency in the total error term is the highest. Log linear model has the 
second lowest error term after the translog model. The direct comparison of the total variation 
sigma-squared is impossible as the data has been transformed either by taking the logarithm or by 
dividing the data by energy value.   
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Table 3.2  Estimation results for the parameters of linear model specification  

 Coef std.err t-ratio 
Intercept -535.8 180.8 -2.964 
Y1 0.1513 0.0458 3.306 
Y2 0.6899 0.0241 28.65 
Y3 0.1212 0.0119 10.19 
sigma-squared 1432577 1.857 771370 
Gamma 0.6942 0.1035 6.707 
Mu -226.2 532.8 -0.4246 

 

Table 3.3  Estimation results for the parameters of loglinear model specification 
 Coef std.err t-ratio 
Intercept -0.1393 0.1542 -0.9040 
logY1 0.2320 0.0856 2.710 
logY2 0.3304 0.0273 12.08 
logY3 0.4068 0.0857 4.744 
sigma-squared 0.0570 0.0624 0.9132 
Gamma 0.8451 0.1752 4.8246 
Mu -0.1461 0.5516 -0.2650 

 

Table 3.4  Estimation results for the parameters of translog model specification9 
 Coef std.err t-ratio 
Intercept 2.858 1 2.858 
logY1 1.353 1 1.353 
logY2 0.5522 1 0.5522 
logY3 -1.325 1 -1.325 
½(logY1)^2 0.7069 1 0.7069 
logY1*logY2 -0.1661 1 -0.1661 
logY1*logY3 -0.5885 1 -0.5885 
½(logY2)^2 0.3894 1 0.3894 
logY2*logY3 -0.1789 1 -0.1789 
½(logY3)^2 0.8126 1 0.8126 
sigma-squared 0.0108 1 0.0108 
Gamma 0.05 1 0.05 
Mu -1.96E-10 1.00E+00 -1.96E-10 

 

                                                 

9 The translog model estimation is not statistically satisfactory as can be seen by the reported standard deviations that 
are the same for all parameters. The degrees of freedom in the translog are quite large, in fact too large. The 
optimization routine does not converge well and the log likelihood obtained from a pure OLS specification (with 
noise but no inefficiency) is actually larger that the full SFA log likelihood for the reported parameter values. 
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Table 3.5  Estimation results for the parameters of normed linear model specification 
 Coef std.err t-ratio 
Intercept 131.96 2.402 54.94 
Y1 0.2558 0.0551 4.642 
Y2 0.6567 0.0390 16.85 
Y3 0.0627 0.0166 3.776 
sigma-squared 0.0893 0.0708 1.261 
Gamma 0.9606 0.0395 24.32 
Mu -0.5858 0.6762 -0.8664 

 

The correlations of the efficiency scores of the compared models were also analyzed. These key 
results are summarized in Table 3.6. We see in particular that the DEA and the translog or the 
simpler normed linear SFA specification have quite good correlations. As discussed earlier, this is 
not a criterion in is own, but an indication that the variable specification is sensible. 

To get a better understanding of the actual meaning of the correlations, we can look at the 
differences between the efficiency scores. For example the correlation 0.80 of DEA NDRS and 
SFA normed linear model mean that the difference (SFA minus DEA NDRS score) varies 
between -0.113 and +0.118. Half of the population have difference between -0.009 and +0.070. 
Furthermore, the average difference is 0.035, which indicates the SFA scores are on average 
higher that the DEA scores. The individual differences are illustrated in Section 4.6. 

Table 3.6  Correlation of the efficiency scores  
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d_dea_far_vrs 1 0.8353 0.8401 0.7546 0.2004 0.3656 0.7080 0.6337
d_dea_far_drs 0.8353 1 0.5944 0.8842 0.5499 0.4131 0.6551 0.4971
d_dea_far_ndrs 0.8401 0.5944 1 0.7798 -0.0607 0.4904 0.8429 0.8010
d_dea_far_crs 0.7546 0.8842 0.7798 1 0.3865 0.5704 0.8371 0.6881
d_sfa_linear_far 0.2004 0.5499 -0.0607 0.3865 1 0.2185 0.0727 -0.0262
d_sfa_loglinear_far 0.3656 0.4131 0.4904 0.5704 0.2185 1 0.6557 0.8546
d_sfa_translog_far 0.7080 0.6551 0.8429 0.8371 0.0727 0.6557 1 0.8388
d_sfa_normedlinear_far 0.6337 0.4971 0.8010 0.6881 -0.0262 0.8546 0.8388 1 

 
 
Furthermore, the results suggest that the efficiency distribution should be related to the size. This 
means that suitable parametric models are loglinear, translog model and normed linear model. 
The analysis concerning various norming variables in the normed linear model suggest the use of 
value of energy (Y1) as the indicator of company size. Energy delivered is also a cost driver (or 
related to a cost driver) by itself 
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3.4.3 Conclusions on the functional form   
On the basis of the analysis of different input-output combinations and functional forms, we can 
present the following conclusions concerning the analysed functional forms. Each functional 
form is first analysed based on the criteria for selecting the model that are presented above and 
then we present out conclusion based on these results.   
  

Linear  

Conceptually linear functional form is attractive. It is very easy to interpret. However it is 
possibly the functional form is too simple to describe the real cost structure. Statistically the 
model clearly suffers from heteroscedasticity as the absolute inefficiency (in €) depends on the 
size of the company. This also leads to a situation where large companies get higher efficiency 
score that small ones and this is contradictory with the experience that we have e.g. constant 
returns to scale DEA. Furthermore the results have very low correlation with DEA results.  

The problems with the heteroscedasticity is the most serious problem with this model and we 
cannot recommend using it.  

Loglinear 

Compared to linear model loglinear model is slightly more complicated as the data is transformed 
by taking a logarithm of both the inputs and outputs. However it is still relatively easy to 
understand and interpret. The transformation solves the problem of heteroscedasticity as 
illustrated by the figures based on the data. Furthermore the model gives a direct indication of 
the returns to scale properties. In this case the function is very close to constant return to scale 
(or only very slightly increasing returns to scale).  

However there is a significant conceptual problem with the model. As we are estimating a cost 
function, the production possibility set covered by the function is not convex, In other words, 
the iso-cost curves (which are straight lines in the log-log space) are such that a linear 
combination of two points on this curve is outside the production possibility set. Possibly due to 
this conceptual difference, the results have fairly low correlation with DEA efficiency scores.  

The conceptual problems related to the loglinear cost function are illustrated in Figure 3.8. The 
picture on the left presents an imaginary data set (red points) and a straight line that corresponds 
to an iso-cost curve that is produced by fitting a linear model in this type of data. The right hand 
side presents the same iso-cost curve in the original scale and shows how a DEA frontier fitted in 
the imaginary data set would look like (red line).   
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Figure 3.8 Illustration of loglinear cost function 

 

Due to the conceptual problems related to the loglinear model we suggest discarding this model.  

Translog 

Translog model is a flexible functional form and is often used as a starting point in building a 
model. Conceptually is it attractive as it gives a second order approximation of the production 
function in stead of just linear. However, the flexibility leads to fairly large number of parameter 
and the interpretation of the model is quite difficult. As log linear model this approach may lead 
to non-convex production possibility set.  

In this case the translog model shows a very good fit to the dataset, but almost all the coefficients 
are statistically insignificant. This suggests that there is too much flexibility in the model. Also 
form an intuitive and experience point of view average efficiency of 0.98 with the suggested 
inputs and outputs seem too high. On the other hand we see high correlation with the DEA 
results.  

The results suggest that translog is too flexible, it has clear problems in the interpretation and 
most of the parameters are insignificant. Hence, it is not suitable.  

Normed linear 

Conceptually the normed linear model is similar to the linear model – it is easy to interpret and 
has natural properties. It solves the problems related to heteroscedasticity without the conceptual 
problems related to the loglinear model. On the other hand, it has the same potential problem of 
being too simplistic as the linear model. However statistically the model gives good results, and 
all the coefficients are significant. The results also seem to be in line with the expected level of 
efficiency – the efficiency scores are slightly higher that in DEA. There is also high correlation 
with DEA results, especially NDRS DEA model.  

Based on this normed linear model seems to be the most suitable functional form.  
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3.5 Recommended model structure 
Based on our analysis on the input-output combinations and functional forms, our initial 
recommendation is to use normed linear model with opex+depreciation+interruption cost (X1) 
as inputs and value of energy (Y1), network length (Y2), and number of customers (Y3) as 
outputs. In the suggested model suggested normalisation factor is the value of energy (Y1).   

The estimated cost function can be summarised as follows10:  

Total cost = 132 + 0.26 Energy value + 0.66 Network km + 0.06 Customers 

The total cost in this model is presented in thousand euro and the interpretation is that there is 
an initial cost of 132 thousand euro for all the companies and after that each € of energy value 
increases the annual costs with 26 cents, each kilometre of line with 660 euro and each customer 
with 60 euro.  

The analysis of the noise and inefficiency results shows that the inefficiency scores are based on a 
truncated normal distribution with negative mean11 and hence efficiency scores close to 1 are 
more frequent than lower efficiency scores. Most of the total variation is classified as inefficiency. 
According to the estimation results, the share of inefficiency in the total error term is actually 
very high, which suggests a good model structure and quality of data. 

3.5.1 Returns to scale assumption of the recommended model 
As the purpose of this study has been to produce result that are comparable to the DEA models 
analysed in study A, it is important to analyse the returns to scale properties of the recommended 
model in more detail. The returns to scale assumption of the DEA model is of specific interested 
and this question was analysed separately also in SFA. 

In the recommended SFA model presented above, no a priori assumptions on the returns to 
scale properties were made. The recommended model includes a positive constant term, i.e. a 
positive initial cost. This means that the model corresponds to increasing returns to scale 
assumption. In the DEA terminology this is called non-decreasing returns to scale (NDRS). In 
the following the acronym NDRS is used for the above presented SFA model that includes the 
constant term.  

The parametric structure of SFA allows some control over the returns to scale properties. In the 
case linear functional form, the constant term defines the returns to scale properties. Hence 
setting it to zero in the estimation will lead to a model that corresponds to the constant returns to 
scale (CRS) DEA model. In the following we compare this CRS SFA model to the above 
presented NDRS model.   

The estimation results related to normed linear CRS model are presented in Table 3.7. 

                                                 

10 Detailed results were presented in Table 3.5 
11 The exact mean is -0.586*Energy, see illustration of distributions with negative mu in Figure 2.5 
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Table 3.7  Estimation results for the parameters of normed linear CRS model specification 
 Coef std.err t-ratio 
Y1 0.2673 0.0522 5.124 
Y2 0.7845 0.0309 25.40 
Y3 0.0565 0.0169 3.337 
sigma-squared 0.1192 0.0650 1.835 
Gamma 0.9693 0.0238 40.66 
Mu -0.6798 0.4563 -1.490 

 

The constant term in the above presented normed linear NDRS model is statistically significant 
and hence it cannot be dropped from the model with statistical reasons. On the other hand the 
results of the loglinear model suggest close to constant returns. Also from a regulatory point of 
view, constant returns to scale model has some desirable properties. Most significantly it is 
neutral in terms of the scale of operation and hence the returns to scale assumption does not per 
se direct the structural development of the industry. This means that companies are directed 
towards the most economic scale (for example through mergers, acquisitions etc.)  

When we estimate the normed linear CRS model we get the following results:  

Total cost = 0.27 Energy value + 0.78 Network km + 0.06 Customers 

Compared to the normed linear NDRS especially the impact of length of network has increased 
is now 780 €/km compared to the earlier 660 €/km. All the coefficients are significant also in this 
model.  

We have also analysed the correlation of the SFA CRS model the most important DEA models. 
These results are presented in Table 3.8.  

Table 3.8  Correlation of SFA normed linear CRS and NDRS models with DEA models 

 SFA normed linear 
 CRS NDRS 
d_dea_far_vrs 0.59 0.63 
d_dea_far_drs 0.74 0.50 
d_dea_far_ndrs 0.55 0.80 
d_dea_far_crs 0.77 0.69 

 

When we compare the normed linear CRS model to the DEA models, we se, that the correlation 
with DEA CRS results increase from 0.69 to 0.77. On the other hand the correlation with DEA 
NDRS drops from 0.80 to 0.55.  

Compared to the normed linear NDRS model the average efficiency drops slightly, from 0.89 to 
0.88.12 On the unit level changes are of course larger. Figure 3.9 illustrates the difference in the 
efficiency score relative to the input. This shows that the use of Normed linear NDRS model is 
more favourable to the small companies.  

                                                 

12 The average efficiency scores of the main models compared are preseted in Table 3.1 
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Figure 3.9  The difference between Normed linear NDRS and CRS compared to the size of 

the company 

 

We can conclude that both the normed linear NDRS and CRS model are applicable and well 
motivated. The choice depends on the intended use and assumptions that are found desirable 
when deciding on the regulatory system.  

3.5.2 Conclusion 
Based on our analysis we recommend the use of normed linear SFA model. The models can be 
estimated either in CRS or NDRS form. The analysis does not give any clear answer for the 
choice between these two. Results suggest either constant or slightly increasing returns to scale. 
Statistical results suggest that the NDRS version would be the right choice. On the other hand, 
CRS model is more neutral from the regulatory point of view. When the results are used together 
with DEA results, it is important to use the corresponding returns to scale assumptions in both 
methods.  
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4 Analysis of  regulatory implications 

4.1 Stability over years 
From the regulatory point of view it is important to analyse how stable the results are form year 
to year. It would have been best to analyse the changes using the model specification 
recommended above but unfortunately this was not possible. Year 2003 data does not include the 
information on depreciation, and on the other hand data from quite many companies are missing 
from the preliminary 2005 data. Hence it was decided that the stability will be analysed based on 
2003 and 2004 data sets using the inputs and outputs used in the existing DEA model. This 
means that instead of total cost (opex+depreciation+interruption cost) only operational 
expenditure (opex) is used as an input.  

Table 4.1 presents the estimation results. This shows that the coefficients of the model change 
only slightly from year to year. This suggests that the efficiency scores would be fairly stable from 
year to year.   

Table 4.1  Estimation results for 2003 and 2004 data   

2003 sfa.normedlinear.vrs  2004 sfa.normedlinear.vrs  
Output coef std.err t-ratio Output coef std.err t-ratio 
Constant 88.70 3.806 23.30 Constant 89.60 1.011 88.62 
Energy 0.1935 0.0380 5.089 Energy 0.1828 0.0411 4.446 
Network 0.2069 0.0245 8.435 Network 0.2264 0.0248 9.116 
Users 0.0320 0.0119 2.686 Users 0.0327 0.0131 2.491 
sigma-squared 0.0284 0.0118 2.401 sigma-squared 0.0223 0.0067 3.316 
Gamma 0.9076 0.0597 15.20 gamma 0.8704 0.0645 13.49 
mu  -0.3213 0.1898 -1.693 mu -0.2788 0.1225 -2.277 
        
2003 sfa.normedlinear.crs  2004 sfa.normedlinear.crs  
Output coef std.err t-ratio Output coef std.err t-ratio 
Energy 0.1731 0.0375 4.611 Energy 0.1575 0.0668 2.358 
Network 0.2842 0.0290 9.810 Network 0.3100 0.0328 9.446 
Users 0.0341 0.0113 3.013 Users 0.0357 0.0155 2.297 
sigma-squared 0.0476 0.0321 1.483 sigma-squared 0.0205 0.0409 0.5022 
Gamma 0.9460 0.0494 19.14 gamma 0.8118 0.3284 2.472 
mu  -0.4245 0.4087 -1.0385 mu -0.1156 0.7237 -0.1560 

 

When we analyse the change in efficiency scores, we see that for many companies the efficiency 
scores have changed more than 5 % points. Hence it was analysed what causes the changes. It 
turned out that changes in opex are the most significant source of changes. Figures 5.1 and 5.2 
illustrate the connection between change in opex and change in efficiency score.  
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Figure 4.1  Change in normed linear NDRS efficiency score compared to change in opex  
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Figure 4.2  Change in normed linear CRS efficiency score compared to change in opex 

 

To better understand the actual change in the production function (frontier) also the shift in the 
frontier was calculated for each company. The changes in the frontier vary from -2.3% to +3.4% 
for the normed linear NDRS model and from -3.1% to +4.6 for the normed linear CRS model. 
Hence the NDRS model seems to be slightly more stable. However, it has to be noticed that the 
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changes have not been analysed based on the model that was recommended and only two years 
were included. The frontier shifts are illustrated in figures 4.3 and 4.4. 
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Figure 4.3  Frontier shift in normed linear NDRS compared to opex in 2004 
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Figure 4.4  Frontier shift in normed linear CRS compared to opex in 2004 
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Based on these results, we can conclude that the frontier is fairly stable and gives a stable 
comparison point. The frontier is more stable than in DEA. Efficiency changes are mostly caused 
by changes in the inputs and outputs of the companies. The results suggest that use more than 
one year data could be used to smooth out fluctuation when setting the improvement target for 
regulatory period of four years. 

4.2 Potential biases 
To analyse the potential biases of the SFA model we compared the efficiency scores to the 
following indicators:  

• Input X1 as a proxy for the size of the company  

• Percentage of cabling (6-70 kV network) as a proxy to separate between urban and rural 
companies  

• Ratio of opex and depreciation as a proxy for different strategies concerning level of 
investments in the network.  

• Interruption cost per customer as a proxy for external conditions causing interruptions 

As it has been agreed that the efficiency score of individual companies will not be published at 
this stage, the results cannot be illustrated by presenting figures where these indicators are 
presented against the efficiency scores. The results reveal that there are no alarming biases, but 
some observations can be made. 

• Normed linear NDRS is slightly favourable for the very smallest companies. According to 
a second stage regression based on input X1 and the efficiency scores this bias is 
statistically insignificant. 

• Normed linear CRS is slightly more favourable for larger companies. This dependence is 
also statistically insignificant in second stage regression.  

• A second stage regression shows that both model versions are slightly favourable for rural 
companies. The efficiency scores drop by about 1 percentage points when the level of 
cabling increases by 10 percentage points. Although the number of companies with high 
percentage of underground cabled is relatively low, this dependence is statistically 
significant. However, the current dataset does not provide good tools for solving this 
issue. In the future the possibility of splitting the length of network in to two separate 
outputs – overhead lines and cables could be analysed.     

There is no significant difference between Normed linear NDRS and CRS versions in terms of 
bias – both models are equally good. However the decision on the returns to scale assumption 
has to be made based on the intended use of the SFA model and it has to take into account the 
returns to scale assumption made in DEA. 

4.3  Confidence intervals  
In this section we shortly discuss the possibilities related to confidence intervals of efficiency 
scores and bias corrected DEA scores. The idea behind these approaches is that statistical 
estimation methods allow us to analyse uncertainly that is related to the results.  
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If we first consider the SFA results, it is theoretically possible to calculate the confidence intervals 
for the efficiency scores on a wanted confidence level (e.g. 95 %). This would mean that instead 
of the best estimate (which has been used above), we would have an interval around it. This 
would reflect the uncertainty related to the scores.  

In DEA bias correction works in the way that it decreases the DEA tendency to give high 
efficiency scores to extreme units (with few or no peer units). Hence the bias corrected efficiency 
scores are always lower than the normal DEA scores. Furthermore, it is also possible to calculate 
confidence intervals for the bias corrected DEA scores.  

If we consider the use of confidence intervals in regulation, the key challenge is that these could 
be used in the way that it benefits either the customers or the companies. Confidence intervals 
are linked to a question of risk sharing between customer and companies when the result includes 
random error. From a statistical point of view, there is no reason to adjust the results as they 
represent the best guess. As there is no clear reason to favour either side, the best estimate results 
are recommended. The use of intervals would also make the results and the link between the 
results and regulation more difficult to understand. 

From a purely statistical point of view it is recommended that bias correction is used in DEA. 
This means that companies are treated more equally. However, the impact is relatively small and 
we loose the easy interpretation i.e. comparison to a real target, and it is more complicated to 
calculate the results. As standard DEA is more conservative i.e. it gives more easily achievable 
targets. Hence our conclusion is that bias correction would not provide clear value added in 
regulation.  

4.4 Marginal impacts 
In DEA the analysis of marginal impacts is interesting as some input and output factors may 
have no impact on the efficiency score. As the SFA model that has been recommended is based 
on a linear cost function, there is a straight forward relation ship between improvements in the 
(total) cost and the efficiency score.  

It has to be noticed that as SFA includes the noise term that is estimated for each company 
during the estimation of the model parameters, the model should be re-estimated every time the 
data changes. However we can approximate the impact by assuming the change in the noise term 
vi is small when we make marginal changes in the data for one unit at a time.  This implies that 
the new efficiency score of unit i after a cost change can be calculated as follows: 

Ei,new = C(yi) / (xi,new – vi), 

where E refers to the efficiency score, and the subscript ”new” refers to the new values after the 
changes in the cost.  

As the noise term can be calculated from the current cost level, frontier cost and the efficiency 
score (i.e. vi = xi – C(yi)/Ei) the formula can be rewritten as follows. 

Ei,new = C(yi) / (xi,new – xi – C(yi)/Ei), 

This way a 1% change in the cost leads to 0.76 – 0.96 %-point change in the efficiency score. The 
variance depends on the initial efficiency of the unit (Ei), i.e. for inefficient units larger relative 
changes are needed.  
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The approximate change in efficiency caused by the change in the output factor yi can also be 
calculated with the above formula. In this case the estimated frontier cost C(yi) in the nominator 
of the formula is replaced by the frontier cost based on the adjusted output values C(yi,new).  

4.5 From efficiency score to efficiency improvement target 
From the regulatory point of view it is very essential how efficiency scores are transformed to 
improvement targets. The project does not aim at developing a detailed model for transforming 
the efficiency scores into improvement targets (or X-factors).  However, this section discusses 
aspects that has to be taken into account and discusses potential approaches on conceptual level. 

The starting point is that all the cost components are subject to improvement target, but they are 
different in terms of their controllability.  

• Opex – most easily controllable in the short run 
• Depreciation – affected only through changes in the network (present value) – slow 

changes 
• Interruption cost – can be affected both by operational activities and investments.  

It can be evaluated that the time for removing inefficiency i.e. catch-up speed is at least 5 years 
for operational expenditure and at least 20 years for capital expenditure or depreciation. As 
interruptions are affected both by the structure of the networks and operational practices, the 
time for lowering interruption costs to target level is between these two extremes.   

We recommend that the following principles are taken into account when setting the 
improvement targets: 

• Although there may in practice be different improvement potentials related to the 
different cost component, it is impossible to say anything detailed about the long term 
improvement potentials related to depreciation and opex separately. This would require 
defining the level of opex and depreciation that lead to the minimum total cost. Shedding 
light on this would require analysis of the three cost components separately. 

• As only one efficiency score is calculated based on three input components, it is natural 
to apply the same long term improvement target to all the components and that the actual 
improvement target is set for the total cost.  

• Different possibilities i.e. different catch-up speeds related to the components need to be 
taken into account. This would ideally take into account the individual situation of each 
company. 

It seems that the ratio of depreciation and opex is the only possible indicator that could be used 
for differentiating between the different catch-up possibilities of each company. The ratio is to 
some extent dependent on environment (e.g. level of urbanisation) but is also depend on the 
decision of the company. It seems that calculating company specific catch-up speed and hence 
company specific improvement targets based on the ratio would be the most natural approach. 

One possible approach would be to calculate an individual catch-up factor for each company 
based on the actual opex-depreciation ratio (that varies between 0.8 – 2.5). The catch-up speed 
could be calculated using the following principle.  

catch-up per year = (opex/(opex+depreciation)*((1-efficiency)/opex catch-up time) + 
(depreciation/(opex+depreciation))*( 1-efficiency)/depreciation catch-up time).  
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If we assume the above catch up speeds, an efficiency score of 0.8 would lead to the following 
improvement targets:  

• Ratio 2/1 -> goal 3%-points per year 
• Ratio 1/1 -> goal 2.5%-points per year 

Before setting the improvement targets the role of interruption costs in the total cost and the 
catch-up speed related to interruption cost should be analysed. Furthermore possible ways of 
setting improvement targets and their impact on the regulatory system as a whole should be 
analysed thoroughly.  

4.6 Ways to combine SFA and DEA 
As the aim is to use the SFA results in parallel with the new DEA model, it is necessary to 
discuss the ways of combining the use of the models in the regulatory model. As related to 
setting the improvement target this report does not aim at providing a comprehensive model. As 
discussed in section 2, there are many possible ways of using the SFA results.  

The starting point of this study has been that the SFA scores will be used in the actual regulatory 
model. This requires that these can be applied in the same way as the DEA scores. If the models 
will be used in parallel, is necessary to analyse different ways of combining SFA and DEA scores.  

Before analysing the ways of combining the results, it is good to have a look at the differences 
between the efficiency scores. Figures 4.5 and 4.6 illustrate the differences. The results clearly 
show that for most of the companies SFA gives a higher efficiency score. 
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Figure 4.5  Comparison of SFA and DEA efficiency scores, NDRS case 
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Figure 4.6  Comparison of SFA and DEA efficiency scores, CRS case 

 
When we consider simple ways of combining the efficiency scores, we can come up with three 
obvious ways: taking the higher score, taking the lower score or using the average. The following 
observations can be made related to these three approaches.  
 

1. Taking the maximum of DEA and SFA scores 
• If one of the score is too high (by mistake), this method leads to a situation where this 

biased score is used. For example, this approach does not solve the problem of hyper 
efficient extreme units in DEA. 

• It is favourable to the companies as the smaller improvement target is chosen. 
• The improvement target will be based on SFA for most of the companies. 

 
2. Taking the minimum of DEA and SFA score 
• Leads to tougher improvement targets than the used of one method only.  
• If one of the score is too low by mistake, this punishes the company. The target may be 

unrealistic. On the other hand, the model is most favourable for the customers.  
• The improvement target will be based on DEA for most of the companies. 

 
3. Taking the average of DEA and SFA 
• Filters out potential mistakes related to both approaches and filter out extremes, although 

does not exclude biased results totally.  
• The use of average will, on average, lead to lower improvement targets than the use of 

DEA alone. 
 
Also the total improvement potential of all the DSOs can be analysed. The actual impact on cost 
levels is of course impossible to know without knowing the actual regulatory model and the way 
companies respond to this. However, this analysis gives some indication of the improvement 
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potential the models imply. The results are presented in Table 4.2. These numbers can be 
compared to the total input of all the companies, 764 million €. The table shows the natural result 
that higher average efficiency scores indicate smaller industry level improvement potential. For 
example for the SFA NDRS model the improvement potential is estimated to be 12% of the total 
input and for Max(SFA, DEA) the potential corresponds to 9%.   

Table 4.2  Total improvement target (1000 €) of all the DSOs based on different efficiency 
scores and their combinations 

  NDRS CRS 
SFA 93 600 79 900 
DEA 114 000 117 000 
Max(SFA, DEA) 84 200 69 900 
Average(SFA, DEA) 104 000 98 600 
Min(SFA, DEA) 123 000 127 000 
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5 Conclusion and recommendations 
This study has aimed at developing an alternative efficiency analysis model for analysing the 
efficiency improvement potential of Finnish DSOs. The purpose has been to develop a model 
that is analogical to the new DEA model that has been developed in a parallel study. The primary 
objective has been to overcome the possible estimation biases that are present in DEA.  Based 
on a literature review, Stochastic Frontier Analysis (SFA) was chosen as a starting point. It 
provides a complementary approach that tackles the weaknesses of DEA.  

The study analysed a number of different functional forms and input-output combinations. The 
models were analysed from different perspectives, taking into account conceptual, statistical, 
regulatory and pragmatic criteria and the earlier experience on the efficiency levels. The data set 
was identical to the parallel DEA study which allows direct comparison of the results. Year 2004 
data has been the primary dataset. Stability of the results was analysed by comparing the results to 
year 2003.  

The main focus of the study has been to develop the model concept, i.e. to choose the input and 
output factors, functional form and assumptions concerning the efficiency and noise 
distributions. The study clearly shows the applicability of SFA in the Finnish regulatory context. 
However, the exact model parameters and especially company specific efficiency scores should 
be re-estimated and analysed more carefully before using the model in actual regulation. The 
estimation should ideally be based on the actual data definitions that will be used in the 
regulation. For example for year 2005, new interruption data will be available.    

Based on a thorough analysis of various possible models, we recommend that the efficiency 
analysis would be based on the use of operational expenditure, depreciation and interruption 
costs as an input and value of energy, network length and number of customers as outputs. 
Furthermore, we recommend the use of linear functional form, where heteroscedasticity is taken 
into account in the estimation by normalising (dividing) the input and output factors by the value 
of energy. Depending on the returns to scale assumptions made in DEA, the model can be 
estimated either with or without constant leading to constant returns to scale or non-decreasing 
returns to scale situation. 

The analysis of regulatory consequences shows that there are no clear biases in the SFA scores. It 
treats different sized companies and both urban and rural companies reasonably fairly. The SFA 
scores are higher than the corresponding DEA scores for most of the companies. Furthermore, 
the stability of the SFA production function is good, providing a more stable comparison point 
than DEA. The results indicate that the observed changes in the efficiency scores are mostly 
caused by changes in the own inputs and outputs of the individual company.  

When considering the use of the SFA scores a number of issues have to be solved. This report 
has shortly discusses possible ways of combining SFA and DEA scores, and ways of 
transforming the efficiency score into efficiency improvement target (X-factor). Our preliminary 
suggestion is that DEA and SFA scores could be combined by calculating an average of the 
scores. When setting the improvement targets, the differences in the time scale needed for 
removing inefficiency related to operational expenditure and depreciation have to be taken into 
account. On possible approach would be to assume that a given percentage of the inefficiency 
can be removed in a year and that operational expenditure and depreciation have different 
percentages. However, these questions have to be analysed thoroughly before the results are used 
in actual regulation.  
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As the results will be used for setting an improvement target for a regulatory period of four years, 
our suggestions is that the model is estimated once before the start of the period. These results 
would be used for setting the company specific improvement target. The results suggest that use 
more than one year data could be used to smooth out fluctuation when setting the improvement 
target for regulatory period of four years. If reliable data is available, a few year data could be 
used as a basis for setting the improvement targets. During the regulatory period, yearly results 
can be published for information purposes. This would give the companies information on their 
development in the same spirit as the DEA scores during the current regulatory period.  

It has to be noted that the comprehensive data set used in the study was limited to one year, 
2004. Designing the actual regulatory model would benefit from analysis of longer time period. 
Once the 2005 data set is available, it is recommended that it is analysed in detail.  
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